Non-prismatic reinforced concrete (RC) beams are widely used for various practical purposes, including enhancing architectural aesthetics and increasing the overall thickness in the support area above the column, which gives high assurance to services that this will not result in the distortion of construction features and can reduce heights. The hollow sections (recess) can also be used for the maintenance of large structural sections and the safe passage of utility lines of water, gas, telecommunications, electricity, etc. They are generally used in large and complex civil engineering works like bridges. This study conducted a numerical study using the commercial finite element software ANSYS version 15 for analysing RC beams, hollow longitudinally sectioned and retrofitted with carbon fibre reinforced polymers (CFRPs), which were subjected to concentrated vertical loads. The numerical analysis results on the simulated beam models were in excellent agreements with the previous experimental test results. This convergence was confirmed by a statistical analysis, which considered the correlation coefficients, individual arithmetic means and standard deviations for all the calculated deflections of the simulated beam models. A proposed numerical simulation model with the hypotheses can be considered suitable for modelling the behaviours of simple supported non-prismatic RC beams under vertical concentrated loads. The numerical results showed that altering the cross-section from solid to hollow could reduce the load carrying capacities of the beams by up to 53% and increase the corresponding deflections by up to 40%, respectively. Using steel pipes for making recesses could enhance the loading capacity by up to 56%, increase the ductility, and reduce the corresponding deflections by up to 30%, respectively. Finally, it was found that bonding the CFRP sheets in the lower middle tensile areas of the hollow beams could improve the resistance and reduce the deformations by up to 27%. The failure patterns for all the numerical models were shear failure. The cylinder compressive strength could be used as a mechanical parameter for modelling and assessing the structural behaviours of the beam models, as its increase could improve the load carrying capacities and reduce the deflections by 30–50%.
Although there are many wastewater treatment plants, we still suffer from many problems resulting from a lack of experience or technical operating problems. In this research, the service’s efficiency is evaluated according to the design laws required for small factories in the province of Najaf, which works with filtering technology through point filtration, the old project in the Al-Baraka plant, and the second works. Within the biological treatment mbbr + activated sludge, which is a biomass technology where samples were taken from both plants and annual values of the pollutant rate after treatment in the old Al-Baraka plant project COD 64 mg/L and the demand for biochemical oxyge
This study aims to evaluate the performance of the sewage treatment plant in Al-Diwaniya, one of cities in the southern part in Iraq. This evaluation could be used to facilitate effluent quality assessment or optimal process control of the plant. The influent reaching the plant is considered a medium to strong in strength with BOD5/COD ratio in the range 0.23 and 0.69 which can be considered an easily degradable sewage by the biological processes performed by the activated sludge unit. The quality of the effluent was found to be higher than the Iraqi standards for disposal to water bodies. The BOD5/COD ratios of the treated sewage varied over a wide range as low of 0.13 to 1.48 indicating operational problems in the plant. Regression ana
... Show MoreWe studied at the morphology, structural setup, and optical characteristics of thin cadmium (CdSe) films a thickness of 250 nm that were created by thermal evaporation over glass, The films exhibited a hexagonal shape were crystalline, and tended to form grains in the (111) crystallographic direction, according to the X-ray diffraction examinations. These characteristics were established using the investigation's findings. Through the use of thin films of CdSe doped with Ag at a concentration of 1.5%, the crystal structure orientations for pure CdSe (25.32, 41.84) and CdSe:Ag (25.39, 41.01) that were both pure as well as those that were doped with silver were both determined. The band gap of the optical spectrum decreased by 1.93–
... Show MoreA new Schiff base, 2-N( 4- N,N – dimethyl benzyliden )5 – (p- methoxy phenyl) – 1,3,4- thiodiazol ,and their metal complexes Cu (Π) ,Ni (Π), Fe (III) , Pd (Π) , Pt (IV) , Zn(Π) ,V(IV) and Co (Π) , were synthesized. The prepared complexes were identified and their structural geometries were suggested by using flam atomic absorption technique , FT-IR and Uv-Vis spectroscopy, in addition to magnetic susceptibility and conductivity measurements. The study of the nature of the complexes formed in ethanol solution , following the mole ratio method , gave results which were compared successfully with those obtained from the isolated solid state studied. Structur
... Show MoreThis paper focused on the stone matrix asphalt (SMA) technology that was developed essentially to guard against rutting distress. For this procedure, fibers play a racy role in stabilizing and preventing the drain down problem caused by the necessity of high binder content coupled with their strengthening effect. A set of specimens with cylindrical and slab shapes were fabricated by inclusions jute, polyester, and carbon fibers. For each type, three contents of 0.25%, 0.5%, and 0.75% by weight of mixture were added by lengths of 5, 7.5, and 10 mm. The prepared mixtures were tested to gain the essential pertained parameters discriminated by the values of drain down, Marshall quotient, rut depth, and dynamic stability. It
... Show MoreIn the present study, composites were prepared by Hand lay-up molding and investigated. The composites constituents were epoxy resin as the matrix, 6% volume fractions of Glass Fibers (G.F) as reinforcement and 3%, 6% of industrial powder (Calcium Carbonate CaCO3, Potassium Carbonate K2CO3 and Sodium Carbonate Na2CO3) as filler. Density, water absorption, hardness test, flexural strength, shear stress measurements and tests were conducted to reveal their values for each type of composite material. The results showed that the non – reinforced epoxy have lower properties than composites material. Measured density results had show an incremental increase with volume fraction increase
... Show MoreThe main objective of the paper is to study the possibility of erecting 2 MW wind turbine in the south of Iraq (Barjisiah site) by utilizing WAsP model. Wind potential and output predicted the power of WT at a supposed site was calculated. The results for proposed WT showed the WT has a weak performance due to its high capacity and low potential of wind speeds at this site. So, the WT will provide power for a limited time during the year due to its operating at the zone under the rated wind speed.
Aim: This study aimed to investigate the impact of rabbit serum on skin wound healing with the help of histological examination. Materials and Methods: A total of ten indigenous rabbits were used in this study. The animals were divided into two groups: control and serum- treated. The histological assessment was done with a paraffin embedding technique and the histological sections were stained with H&E stain. Results: Severe infiltration of polymorphonuclear leukocytes with severe fibrin deposits were seen in serum treated group at 2 days post-injury; at 7 days post-injury the changes revealed moderate fibroplasia, fibrin deposit and severe infiltration of both mononuclear and polymorphonuclear leukocytes; at 14 days post-inju
... Show MoreThe Pulse Coupled Oscillator (PCO) has attracted substantial attention and widely used in wireless sensor networks (WSNs), where it utilizes firefly synchronization to attract mating partners, similar to artificial occurrences that mimic natural phenomena. However, the PCO model might not be applicable for simultaneous transmission and data reception because of energy constraints. Thus, an energy-efficient pulse coupled oscillator (EEPCO) has been proposed, which employs the self-organizing method by combining biologically and non-biologically inspired network systems and has proven to reduce the transmission delay and energy consumption of sensor nodes. However, the EEPCO method has only been experimented in attack-free networks without
... Show More