Preferred Language
Articles
/
rhYX1YgBVTCNdQwCqoJh
Synthesis, Molecular Modeling, DNA Damage Interaction, and Antioxidant Potential of Hesperidin Loaded on Gold Nanoparticles
...Show More Authors

The flavonoglycone hesperidin is recognized as a potent anti-inflammatory, anticancer, and antioxidant agent. However, its poor bioavailability is a crucial bottleneck regarding its therapeutic activity. Gold nanoparticles are widely used in drug delivery because of its unique properties that differ from bulk metal. Hesperidin loaded gold nanoparticles were successfully prepared to enhance its stability and bioactive potential, as well as to minimize the problems associated with its absorption. The free radical scavenging activities of hesperidin, gold nanoparticles, and hesperidin loaded gold nanoparticles were compared with that of Vitamin C and subsequently evaluated in vitro using 2,2-diphenyl-1-picrylhydrazyl assay. The antioxidant pharmacophore-based structure-activity relationship analysis was assessed by the density functional theory as well as quantum chemical calculations. Moreover, the structural properties were utilized using Becke’s three-parameter hybrid exchange and Lee-Yang-Parr’s correction of functional approaches. Hesperidin-loaded gold nanoparticles were found to decrease hydrogen peroxide (H2O2) and thus induce Deoxyribonucleic acid (DNA) instability. In addition, hesperidin-gold nanoparticles were observed to display important antioxidant potential as well as ameliorate the functional activity of macrophages against Escherichia coli, possibly protecting DNA. These particles might be appropriate for clinical trials and could prove useful for the treatment of various life-threatening disorders.

Scopus Clarivate Crossref
View Publication
Publication Date
Mon Jan 01 2024
Journal Name
Baghdad Science Journal
Synthesizing and Using Iron Oxide Nanoparticles as Nanocomposite in Cotton Fabrics Nanofinishing
...Show More Authors

Metal oxide nanoparticles, including iron oxide, are highly considered as one of the most important species of nanomaterials in a varied range of applications due to their optical, magnetic, and electrical properties. Iron oxides are common compounds, extensive in nature, and easily synthesized in the laboratory. In this paper, iron oxide nanoparticles were prepared by co-precipitation of (Fe+2) and (Fe+3) ions, using iron (II and III) sulfate as precursor material and NH4OH solution as solvent at 90°C. After the synthesis of iron oxide particles, it was characterized using X-ray diffraction (XRD), infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). These tests confirmed the obtaining o

... Show More
View Publication Preview PDF
Scopus (10)
Crossref (5)
Scopus Crossref
Publication Date
Fri Mar 01 2024
Journal Name
Baghdad Science Journal
Copper Nanoparticles Synthesized in Biopolymer Matrix and Their Application in Antibacterial Activity
...Show More Authors

Copper is a cheaper alternative to various noble metals with a range of potential applications in the field of nanoscience and nanotechnology. However, copper nanoparticles have major limitations, which include rapid oxidation on exposure to air. Therefore, alternative pathways have been developed to synthesize metal nanoparticles in the presence of polymers and surfactants as stabilizers, and to form coatings on the surface of nanoparticles. These surfactants and polymeric ligands are made from petrochemicals which are non- renewable. As fossil resources are limited, finding renewable and biodegradable alternative is promising.The study aimed at preparing, characterizing and evaluating the antibacterial properties of copper nanoparticle

... Show More
View Publication Preview PDF
Scopus (3)
Scopus Crossref
Publication Date
Mon Sep 11 2023
Journal Name
Journal Of Chemical Technology & Biotechnology
Modeling and optimization of biodiesel from high free‐fatty‐acid chicken fat by non‐catalytic esterification and mussel‐shell‐catalyzed transesterification
...Show More Authors
Abstract<sec><title>BACKGROUND

In this study, biodiesel was prepared from chicken fat via a transesterification reaction using Mussel shells as a catalyst. Pretreatment of chicken fat was carried out using non‐catalytic esterification to reduce the free fatty acid content from 36.28 to 0.96 mg KOH/g oil using an ethanol/ fat mole ratio equal to 115:1. In the transesterification reaction, the studied variables were methanol: oil mole ratio in the range of (6:1 ‐ 30:1), catalyst loading in the range of (9‐15) wt%, reaction temperature (55‐75 °C), and reaction time (1‐7) h. The heterogeneous alkaline catalyst was greenly synthesized from waste mussel shells throughout a calcin

... Show More
View Publication
Scopus (6)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Mon Sep 11 2023
Journal Name
Journal Of Chemical Technology &amp; Biotechnology
Modeling and optimization of biodiesel from high free‐fatty‐acid chicken fat by non‐catalytic esterification and mussel‐shell‐catalyzed transesterification
...Show More Authors
Abstract<sec><title>BACKGROUND

In this study, biodiesel was prepared from chicken fat via a transesterification reaction using Mussel shells as a catalyst. Pretreatment of chicken fat was carried out using non‐catalytic esterification to reduce the free fatty acid content from 36.28 to 0.96 mg KOH/g oil using an ethanol/ fat mole ratio equal to 115:1. In the transesterification reaction, the studied variables were methanol: oil mole ratio in the range of (6:1 ‐ 30:1), catalyst loading in the range of (9‐15) wt%, reaction temperature (55‐75 °C), and reaction time (1‐7) h. The heterogeneous alkaline catalyst was greenly synthesized from waste mussel shells throughout a calcin

... Show More
View Publication
Scopus (6)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Journal Of The Mechanical Behavior Of Materials
Numerical modeling of single closed and open-ended pipe pile embedded in dry soil layers under coupled static and dynamic loadings
...Show More Authors
Abstract<p>For the design of a deep foundation, piles are presumed to transfer the axial and lateral loads into the ground. However, the effects of the combined loads are generally ignored in engineering practice since there are uncertainties to the precise definition of soil–pile interactions. Hence, for technical discussions of the soil–pile interactions due to dynamic loads, a three-dimensional finite element model was developed to evaluate the soil pile performance based on the 1 g shaking table test. The static loads consisted of 50% of the allowable vertical pile capacity and 50% of the allowable lateral pile capacity. The dynamic loads were taken from the recorded data of the Kobe e</p> ... Show More
Scopus (13)
Crossref (11)
Scopus Clarivate Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Ieee Access
An Evolutionary Algorithm With Heuristic Operator for Detecting Protein Complexes in Protein Interaction Networks With Negative Controls
...Show More Authors

View Publication
Scopus (4)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Sun Nov 01 2020
Journal Name
Physics Of Atomic Nuclei
Study of the Halo Structure for Some Light Neutron-Rich Nuclei Using the Cosh Potential
...Show More Authors

The radial wave functions of the cosh potential within the three-body model of (Core+ 2n) have been employed to investigate the ground state properties such as the proton, neutron and matter densities and the associated rms radii of neutron-rich 6He, 11Li, 14Be, and 17B exotic nuclei. The density distributions of the core and two valence (halo) neutrons are described by the radial wave functions of the cosh potential. The obtained results provide the halo structure of the above exotic nuclei. Elastic electron scattering form factors of these halo nuclei are studied by the plane-wave Born approximation.

View Publication
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sat Mar 31 2018
Journal Name
Journal Of Engineering
Potential of Microalgae Cultivation in Dairy Wastewater as a Step in Low-Cost Biofuel Production
...Show More Authors

The present study addresses adopting the organic and nutritious materials in dairy wastewater as media for cultivation of microalgae, which represent an important source of renewable energy. This study was carried out through cultivation of three types of microalgae; Chlorella sp., Synechococcus, and Anabaena. The results shows the success the cultivation of the Synechococcus and  Chlorella Sp, while the Anabaena microalgae were in low-growth level. The highest growth was in the Synechococcus farm, followed by Chlorella and Anabaena. However, the growth of Synechococcus required 10 days to achieve this increase that re

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Jun 15 2017
Journal Name
International Journal Of Computer Applications
Assessment of Annual Wind Energy Potential at Three Sites in Iraq for Wind Energy Applications
...Show More Authors

Assessment of annual wind energy potential for three selected sites in Iraq has been analyzed in the present work. The wind velocities data from August 2014 to July 2015 were collected from the website of Weather Underground Organization (WUO) at stations elevation (35m, 32m, and 17m) for Baghdad, Najaf, and Kut Al-Hai respectively. Extrapolation of stations elevation and wind velocities was used to estimate wind velocities at (60m, 90m, and 120m). The objectives are to analyze the wind speed data and assess the wind energy potential for wind energy applications. Computer code for MATLAB software has been developed to solve the mathematical model. The results are presented as a monthly and annual average for wind velocities, standard deviat

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Fri Apr 27 2018
Journal Name
Journal Of Periodontal Research
Potential role of periodontal pathogens in compromising epithelial barrier function by inducing epithelial‐mesenchymal transition
...Show More Authors
Background and Objective

Epithelial‐mesenchymal transition (EMT) is a process by which epithelial cells acquire a mesenchymal‐like phenotype and this may be induced by exposure to gram‐negative bacteria. It has been proposed that EMT is responsible for compromising epithelial barrier function in the pathogenesis of several diseases. However, the possible role of EMT in the pathogenesis of periodontitis has not previously been investigated. The aim of this study therefore was to investigate whether gram‐negati

... Show More
View Publication Preview PDF
Scopus (62)
Crossref (54)
Scopus Clarivate Crossref