Preferred Language
Articles
/
ThbuKosBVTCNdQwCnsjj
Modeling and optimization of biodiesel from high free‐fatty‐acid chicken fat by non‐catalytic esterification and mussel‐shell‐catalyzed transesterification
...Show More Authors
Abstract<sec><title>BACKGROUND

In this study, biodiesel was prepared from chicken fat via a transesterification reaction using Mussel shells as a catalyst. Pretreatment of chicken fat was carried out using non‐catalytic esterification to reduce the free fatty acid content from 36.28 to 0.96 mg KOH/g oil using an ethanol/ fat mole ratio equal to 115:1. In the transesterification reaction, the studied variables were methanol: oil mole ratio in the range of (6:1 ‐ 30:1), catalyst loading in the range of (9‐15) wt%, reaction temperature (55‐75 °C), and reaction time (1‐7) h. The heterogeneous alkaline catalyst was greenly synthesized from waste mussel shells throughout a calcination process at different calcination times of (1‐5) h and temperatures of (700‐900) °C. The catalyst was characterized using BET, SEM, EDX, XRD, and FTIR.

RESULTS

In the transesterification reaction, the best values of the studied parameters were: 21:1 methanol: oil molar ratio, 12 wt% catalyst loading, 5 h reaction time, and 63°C reaction temperature, which gave 96.2% methyl esters content. For catalyst synthesis, it was found that the optimum calcination conditions were 900 °C and 3 h, which resulted in a specific surface area of 10.5 m2/g and a large pore volume of 0.0033 cm3/g.

CONCLUSION

A calcium oxide catalyst was successfully prepared from mussel shells. This catalyst was used to transesterify the chicken fat into biodiesel. The prepared catalyst exhibited a high active surface area and a pore volume, confirming that the CaO catalyst produced from waste mussel shells worked effectively, steadily, and affordably to produce renewable biodiesel. The best working conditions for the transesterification reaction were determined using the central Composite Design method (CCD). © 2023 Society of Chemical Industry.

Scopus Clarivate Crossref
View Publication
Publication Date
Mon Sep 11 2023
Journal Name
Journal Of Chemical Technology &amp; Biotechnology
Modeling and optimization of biodiesel from high free‐fatty‐acid chicken fat by non‐catalytic esterification and mussel‐shell‐catalyzed transesterification
...Show More Authors
Abstract<sec><title>BACKGROUND

In this study, biodiesel was prepared from chicken fat via a transesterification reaction using Mussel shells as a catalyst. Pretreatment of chicken fat was carried out using non‐catalytic esterification to reduce the free fatty acid content from 36.28 to 0.96 mg KOH/g oil using an ethanol/ fat mole ratio equal to 115:1. In the transesterification reaction, the studied variables were methanol: oil mole ratio in the range of (6:1 ‐ 30:1), catalyst loading in the range of (9‐15) wt%, reaction temperature (55‐75 °C), and reaction time (1‐7) h. The heterogeneous alkaline catalyst was greenly synthesized from waste mussel shells throughout a calcin

... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Thu Dec 31 2015
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Esterification of Free Fatty Acid with High Chain Alcohol for Biodiesel Production Using Semi-Batch Reactive Distillation
...Show More Authors

The esterification of oleic acid with 2-ethylhexanol in presence of sulfuric acid  as homogeneous catalyst was investigated in this work to produce 2-ethylhexyl oleate (biodiesel) by using semi batch reactive distillation. The effect of reaction temperature (100 to 130°C), 2-ethylhexanol:oleic acid molar ratio (1:1 to 1:3) and catalysts concentration (0.2 to 1wt%) were studied. Higher conversion of 97% was achieved with operating conditions of reaction temperature of 130°C, molar ratio of free fatty acid to alcohol of 1:2 and catalyst concentration of 1wt%. A simulation was adopted from basic principles of the reactive distillation using MATLAB to describe the process. Good agreement was achieved.

View Publication Preview PDF
Publication Date
Thu Jun 01 2023
Journal Name
Heliyon
Heterogeneously catalyzed transesterification reaction using waste snail shell for biodiesel production
...Show More Authors

Biodiesel as an attractive energy source; a low-cost and green synthesis technique was utilized for biodiesel preparation via waste cooking oil methanolysis using waste snail shell derived catalyst. The present work aimed to investigate the production of biodiesel fuel from waste materials. The catalyst was greenly synthesized from waste snail shells throughout a calcination process at different calcination time of 2–4 h and temperature of 750–950 ◦C. The catalyst samples were characterized using X-Ray Diffraction (XRD), Brunauer-Emmett-Teller (BET), Energy Dispersive X-ray (EDX), and Fourier Transform Infrared (FT-IR). The reaction variables varying in the range of 10:1–30:1 M ratio of MeOH: oil, 3–11 wt% catalyst loading, 50–

... Show More
View Publication
Scopus (10)
Crossref (8)
Scopus Clarivate Crossref
Publication Date
Wed Sep 29 2021
Journal Name
Biomass Conversion And Biorefinery
Encapsulated deep eutectic solvent for esterification of free fatty acid
...Show More Authors

A novel encapsulated deep eutectic solvent (DES) was introduced for biodiesel production via a two-step process. The DES was encapsulated in medical capsules and were used to reduce the free fatty acid (FFA) content of acidic crude palm oil (ACPO) to the minimum acceptable level (< 1%). The DES was synthesized from methyltriphenylphosphonium bromide (MTPB) and p-toluenesulfonic acid (PTSA). The effects pertaining to different operating conditions such as capsule dosage, reaction time, molar ratio, and reaction temperature were optimized. The FFA content of ACPO was reduced from existing 9.61% to less than 1% under optimum operating conditions. This indicated that encapsulated MTPB-DES performed high catalytic activity in FFA esterificatio

... Show More
Scopus (11)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Sat Dec 01 2018
Journal Name
Fuel
Biodiesel from batch and continuous oleic acid esterification using zeolite catalysts
...Show More Authors

View Publication
Scopus (74)
Crossref (73)
Scopus Clarivate Crossref
Publication Date
Tue Nov 01 2016
Journal Name
Renewable Energy
Biodiesel production by esterification of oleic acid over zeolite Y prepared from kaolin
...Show More Authors

View Publication
Scopus (136)
Crossref (121)
Scopus Clarivate Crossref
Publication Date
Mon Dec 30 2013
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Heterogeneously Catalyzed Esterification Reaction: Experimental and Modeling Using Langmuir- Hinshelwood Approach
...Show More Authors

The esterification reaction of ethyl alcohol and acetic acid catalyzed by the ion exchange resin, Amberlyst 15, was investigated. The experimental study was implemented in an isothermal batch reactor. Catalyst loading, initial molar ratio, mixing time and temperature as being the most effective parameters, were extensively studied and discussed. A maximum final conversion of 75% was obtained at 70°C, acid to ethyl alcohol mole ratio of 1/2 and 10 g catalyst loading. Kinetic of the reaction was correlated with Langmuir-Hanshelwood model (LHM). The total rate constant and the adsorption equilibrium of water as a function of the temperature was calculated. The activation energies were found to be as 113876.9 and -49474.95 KJ per Kmol of ac

... Show More
View Publication Preview PDF
Publication Date
Wed Nov 14 2018
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Simulation of Batch Reactive Distillation for Biodiesel Production from Oleic Acid Esterification
...Show More Authors

The present work concerns with simulating unsteady state equilibrium model for production of methyl oleate (biodiesel) from reaction of oleic acid with methanol using sulfuric acid as a catalyst in batch reactive distillation. MESHR equations of equilibrium model were solved using MATLAB (R2010a). The validity of simulation model was tested by comparing the simulation results with a data available in literature. UNIQUAC liquid phase activity coefficient model is the most appropriate model to describe the non-ideality of OLAC-MEOH-MEOL-H2O system. The chemical reactions rates results from EQ model indicating the rates are controlled by chemical kinetics. Several variables was studied such as molar ratio of methanol to oleic acid 4:1, 6:1

... Show More
View Publication Preview PDF
Publication Date
Sat Dec 31 2022
Journal Name
Iraqi Journal Of Market Research And Consumer Protection
EFFECT OF USING DIFFERENT LEVELS OF CAMEL FAT (HUMP FAT) ON PHYSIOCHEMICAL COMPOSITION OF SAUSAGE FROM BEEF CAMEL AND CHICKEN : EFFECT OF USING DIFFERENT LEVELS OF CAMEL FAT (HUMP FAT) ON PHYSIOCHEMICAL COMPOSITION OF SAUSAGE FROM BEEF CAMEL AND CHICKEN
...Show More Authors

ABSTRACT

This study was conducted to determine the effect of various levels of hump fat (HF) used in manufacturing of camel, beef and chicken sausage to understand the effect of (HF) on physicochemical composition sausage, Different levels of hump fat (5, 7, and 10 %) were used, physicochemical compositions like (moisture, protein, fat, Ash, water holding capacity, shrinkage, cooking loss and pH) were determined. Results of the study revealed that moisture content showed high significant differences (P≤0.01)among treatments groups, Camel sausage and beef sausage tended to have highest values while chicken sausage reported the lowest value. The study showed no significant difference (P≤0.05) among the

... Show More
View Publication Preview PDF
Publication Date
Sun May 01 2016
Journal Name
Journal Of Engineering
Production of Methyl Ester (Biodiesel) from Used Cooking Oils via Trans-esterification process
...Show More Authors

Used cooking oil was undergoing trans-esterification reaction to produce biodiesel fuel. Method of production consisted of pretreatment steps, trans-esterification, separation, washing and drying. Trans-esterification of treated oils was studied at different operation conditions, the methanol to oil mole ratio were 6:1, 8:1, 10:1, and 12:1, at different temperature 30, 40, 50, and 60 º C, reaction time 40, 60, 80, and 120 minutes, amount of catalyst 0.5, 1, 1.5, and 2 wt.% based on oil and mixing speed 400 rpm. The maximum yield of biodiesel was 91.68 wt.% for treated oils obtained by trans-esterification reaction with 10:1 methanol to oil mole ratio, 60 º C reaction temperature, 80 minute reactio

... Show More
View Publication Preview PDF