Preferred Language
Articles
/
rYakQYYBIXToZYALq4Am
Evaluation of Gas and Downhole Water Sink-Assisted Gravity Drainage GDWS-AGD Process in Saturated Oil Reservoirs with Infinite-Acting Aquifer
...Show More Authors
Abstract<p>A hybrid Gas-Enhanced and Downhole Water Sink-Assisted Gravity Drainage (GDWS-AGD) process has been suggested to enhance oil recovery by placing vertical injectors for CO2 at the top of the reservoir with a series of horizontal oil-producing and water-drainage wells located above and below the oil-water contact, respectively. The injected gas builds a gas cap that drives the oil to the (upper) oil-producing wells while the bottom water-drainage wells control water cresting. The hybrid process of GDWS-AGD process has been first developed and tested in vertical wells to minimize water cut in reservoirs with bottom water drive and strong water coning tendencies. The wells were dual-completed with 7-inch production casing and 2-3/8 inch tubings and perforated above the oil-water contact (OWC) for oil production and below OWC for water drainage. The two completions were hydraulically isolated inside the well by a packer. The bottom (water sink) completion drained water with a submersible pump.</p><p>The GDWS-AGD was efficiently adopted to improve oil recovery at the PUNQ saturated oil field. The PUNQ Field has an infinite active aquifer with very strong edge and bottom water drives. A black oil reservoir flow model was implemented for CO2 flooding simulation of the GDWS-AGD process in comparison with the Gas-Assisted Gravity Drainage (GAGD) process. The comparison was performed to obtain the clearest image about the performance of the combined GDWS-AGD process. Next, Design of Experiments (DoE) and proxy modeling were incorporated to find the most sensitive parameters that affect the GDWS-AGD process performance. The candidate parameters are porosity, horizontal and vertical permeability for each layer, radius of aquifer and rock compressibility.</p><p>In the GDWS-AGD, the produced water not only reduced water cut and coning, but also significantly reduced the reservoir pressure, resulting in improving gas injectivity. In addition, the GDWS-AGD process improved cumulative oil production. More specifically, the results showed that cumulative oil production increased from 3.8*105m3 to 4.7*105m3 and water cut decreased from 97% to 92% in all the horizontal oil producers. For the proxy model, it was cleared from Sobol analysis that the porosity for layer 5 was more influential parameter than others on cumulative oil through GDWS-AGD process with 31% main effects and 0.025% interaction effects, while the horizontal permeability for layer 4 was the most influential parameter with 24% main effects and 1.5% interaction effects. The novelty of GDWS-AGD process comes from its effectiveness to improve oil recovery with reducing the water coning, water cut, and improving gas injectivity. This leads to more economic implementation, especially with respect to the operational surface facilities.</p>
Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Dec 18 2017
Journal Name
Al-khwarizmi Engineering Journal
Fabrication of Carbon Nanotube Reinforced Al2O3/Cr2O3 Nanocomposites by Coprecipitation Process
...Show More Authors

In this research, the effect of multi-walled carbon nanotubes (MWCNTs) on the alumina/chromia (Al2O3/Cr2O3) nanocomposites has been investigated. Al2O3/Cr2O3-MWCNTs nanocomposites with variable contents of Cr2O3 and MWCNTs were fabricated using coprecipitation process and followed by spark plasma sintering. XRD analysis revealed a good crystallinity of sintered nanocomposites samples and there was only one phase presence of Al2O3-Cr2O3 solid solution. Density, Vickers microhardness, fracture toughness and fracture strength have been measured in the sintered samples. The results show tha

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Oct 29 2022
Journal Name
Current Trends In Geotechnical Engineering And Construction
Optimal Bedding Selection with the Specific Soil Type According to the Thrust Forces Generated in the Water Distribution Networks Using the Restraining Joint System
...Show More Authors

A study has been performed to compare the beddings in which ductile iron pipes are buried. In water transmission systems, bends are usually used in the pipes. According to the prescribed layout, at these bends, unbalanced thrust forces are generated that must be confronted to prevent the separation of the bend from the pipe. The bed condition is a critical and important factor in providing the opposite force to the thrust forces in the restraint joint system. Due to the interaction between the native soil and the bedding layers in which the pipe is buried and the different characteristics between them. Also, the interaction with the pipe material makes it difficult to calculate the real forces opposite to the thrust forces and the way they

... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Thu May 28 2020
Journal Name
Applied Sciences
THz-TDS for Detecting Glycol Contamination in Engine Oil
...Show More Authors

There continues to be a need for an in-situ sensor system to monitor the engine oil of internal combustion engines. Engine oil needs to be monitored for contaminants and depletion of additives. While various sensor systems have been designed and evaluated, there is still a need to develop and evaluate new sensing technologies. This study evaluated Terahertz time-domain spectroscopy (THz-TDS) for the identification and estimation of the glycol contamination of automotive engine oil. Glycol contamination is a result of a gasket or seal leak allowing coolant to enter an engine and mix with the engine oil. An engine oil intended for use in both diesel and gasoline engines was obtained. Fresh engine oil samples were contaminated with fou

... Show More
View Publication Preview PDF
Scopus (13)
Crossref (13)
Scopus Clarivate Crossref
Publication Date
Wed Oct 30 2024
Journal Name
Iraqi Journal Of Science
Effectiveness of Eucalyptus camaldulensis Leaves Oil in Upregulating exoU expression in Pseudomonas aeruginosa
...Show More Authors

Results of the current study demonstratedthat out of eighty-three isolatesof Pseudomonas aeruginosa,only twenty-five isolateswere resistant to five different antibiotics (of different classes) that were consequentlyconsideredmultidrug resistant isolates.These isolates developed variable susceptibility toward Eucalyptuscamaldulensisleavesoil (ECO). GC-MS analysis of ECOrevealed that the aromatic oil eugenol is the major constituent.However, the most frequent MIC was 0.39 µg/ml, while the lowest frequent MIC was 3.125 µg/ml.Moreover, this oil at ½ MIC (0.195µg/ml) increased the gene expression of exoU. Itis concluded from the outcomes of the studythat ECOmay cause severe damagewhen used to treat infections caused by P. aeruginosa.

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Wed Jan 01 2025
Journal Name
Aip Conference Proceedings
Biofilm formation rate measurement in water and biomedical systems using photometric smartphones applications
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Journal Of The Mechanical Behavior Of Materials
Concrete strength development by using magnetized water in normal and self-compacted concrete
...Show More Authors
Abstract<p>The main objective of this work was to adopt an environmentally friendly technology with enhanced results. The technology of magnetic water (MW) treatment system can be used in concrete mixture production instead of potable water (PW) to improve both workability and strength. Two types of concrete were adopted: normal concreter production with two grades 25 and 35 MPa and the self-compacted concrete (SCC) with 35 MPa grade. The concrete mixes containing MW instead of PW results showed that, for 25 MPa grade, an improvement in a compressive strength of 15.1, 14.8, and 10.2% was achieved for 7, 28, and 90 days, respectively. For 35 MPa grade, an improvement of 13.6, 11.5, and </p> ... Show More
Crossref (6)
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Journal Of The Mechanical Behavior Of Materials
Concrete strength development by using magnetized water in normal and self-compacted concrete
...Show More Authors
Abstract<p>The main objective of this work was to adopt an environmentally friendly technology with enhanced results. The technology of magnetic water (MW) treatment system can be used in concrete mixture production instead of potable water (PW) to improve both workability and strength. Two types of concrete were adopted: normal concreter production with two grades 25 and 35 MPa and the self-compacted concrete (SCC) with 35 MPa grade. The concrete mixes containing MW instead of PW results showed that, for 25 MPa grade, an improvement in a compressive strength of 15.1, 14.8, and 10.2% was achieved for 7, 28, and 90 days, respectively. For 35 MPa grade, an improvement of 13.6, 11.5, and </p> ... Show More
View Publication
Scopus (5)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Tue Feb 22 2022
Journal Name
Watre
Subsurface Flow Phytoremediation Using Barley Plants for Water Recovery from Kerosene-Contaminated Water: Effect of Kerosene Concentration and Removal Kinetics
...Show More Authors

A phytoremediation experiment was carried out with kerosene as a model for total petroleum hydrocarbons. A constructed wetland of barley was exposed to kerosene pollutants at varying concentrations (1, 2, and 3% v/v) in a subsurface flow (SSF) system. After a period of 42 days of exposure, it was found that the average ability to eliminate kerosene ranged from 56.5% to 61.2%, with the highest removal obtained at a kerosene concentration of 1% v/v. The analysis of kerosene at varying initial concentrations allowed the kinetics of kerosene to be fitted with the Grau model, which was closer than that with the zero order, first order, or second order kinetic models. The experimental study showed that the barley plant designed in a subsu

... Show More
Crossref (10)
Crossref
Publication Date
Tue Mar 30 2010
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Minimization of Toxic Ions in Waste Water Using Emulsion Liquid Membrane Technique
...Show More Authors

In the present study, the removal of zinc from synthetic waste water using emulsion liquid membrane extraction technique was investigated. Synthetic surfactant solution is used as the emulsifying agent. Diphenylthiocarbazon (ditizone) was used as the extracting agent dissolved in carbon tetrachloride as the organic solvent and sulfuric acid is used as the stripping agent. The parameters that influence the extraction percentage of Zn+2 were studied. These are the ratio of volume of organic solvent to volume of aqueous feed (0.5-4), ratio of volume of surfactant solution to volume of aqueous feed (0.2-1.6), pH of the aqueous feed solution (5-10), mixing intensity (100-1000) rpm, concentration of extracting agent (20-400) ppm, surfactant co

... Show More
View Publication Preview PDF
Publication Date
Mon Mar 01 2021
Journal Name
Iop Conference Series: Materials Science And Engineering
Purification and activation of the Iraqi bentonite for edible oil Production
...Show More Authors
Abstract<p>Samples of Iraqi bentonitic sediments, representing local montmorillonite brought from Traifawi region near the Syrian border. Mineralogical the samples were characterized as low grade of Ca-smectite, particle size, chemical analysis, XRD, and BET surface area analyses of the samples were carried out to examine the structure of bentonite before and after acid activation. The goal is to prepare a bleaching earth for edible oil production. Iraqi Bentonite was beneficiated and activated by series of physical and chemical steps, using 4N & 6N concentration of hydrochloric acid and at a temperature of 70-80 ° C. Surface area and pore volume of the samples were determined to assess the bleaching power</p> ... Show More
View Publication
Crossref (5)
Crossref