The refractive indices, nD densities 𝜌, and viscosities of binary mixtures of sulfolane + n -butanol + sec- butanol + iso- butanol + tert – butanol + n-propanol and iso- propanol were measured at 298.15K. Form experimental data, excess molar volum VE , excess molar refractivity ∆nD, excess molar viscosity E and excess molar Gibbs free energy of activation of viscous flow G *E were calculated. From n-propanol – sulfolane and iso- propanol sulfolane mixtures showed negative ∆nD, n-butanol – sulfolane, sec-butanal – sulfolane, iso-butanol – sulfolane and tert- butanol sulfolane , nD was positive over the whole mole fraction rang , while VE , E and G *E show a negative deviation. The
... Show MoreThe effect of micro-and nano silica particles (silica SiO2 (100 μm), Fused silica (12nm)) on some mechanical properties of epoxy resin was investigated (Young's modulus, Flexural strength). The micro-and nano composites were prepared by using three steps process with different volume fraction of micro-and nano particles (1, 2, 3, 4, 5, 7, 10, 15, and 20 vol. %). Flexural strength and Young's modulus of nano composites were increased at low volume fraction (max. enhancement at 4 vol.% ). However at higher volume fraction both Young's modulus and flexural strength decrease. Moreover, above, the mechanical properties are enhanced more than that of neat epoxy resin. The flexural strength decreases with increasing the volume fraction of micr
... Show MoreWhen the depth of stressed soil is rather small, Plate Load Test (PLT) becomes the most efficient test to estimate the soil properties for design purposes. Among these properties, modulus of subgrade reaction is the most important one that usually employed in roads and concrete pavement design. Two methods are available to perform PLT: static and dynamic methods. Static PLT is usually adopted due to its simplicity and time saving to be performs in comparison with cyclic (dynamic) method. The two methods are described in ASTM standard.
In this paper the effect of the test method used in PLT in estimation of some mechanical soil properties was distinguished via a series of both test methods applied in a same site. The comparison of
... Show MoreIn recent decades, tremendous success has been achieved in the advancement of chemical admixtures for Portland cement concrete. Most efforts have concentrated on improving the properties of concrete and studying the factors that influence on these properties. Since the compressive strength is considered a valuable property and is invariably a vital element of the structural design, especially high early strength development which can be provide more benefits in concrete production, such as reducing construction time and labor and saving the formwork and energy. As a matter of fact, it is influenced as a most properties of concrete by several factors including water-cement ratio, cement type and curing methods employed.
Because of acce
This researchs the preparation of particulate polymer composites from Alkyd resin and Iraqi Burn Kaolin which were added as (20%,30%,40%,50%)and comparing with the polymer. It studied Thermal conductivity and Dielectric strength for both of the Alkyd resin and the Composite Material. The result showed an increase in Dielectric strength after adding the Iraqi Burn Kaolin , also the Thermal conductivity was increased by adding the Iraqi Burn Kaolin .
In this research,we are studied impact strength, bending and compression strength of composites including the epoxy resin as a matrix , with gawaian red wood flour ,Russian white wood flour ,glass powder and rock wool fibers as reinforcement materials with volume fraction (20%) for all samples,and compared them in different conditions of temperatures. The results have shown that the impact strength increased with the reinforcement with (particles and fibers),and at high temperatures for all samples prepared,and also observed an increase in elasticity coefficient of epoxy composites filled with (different particles) and decreased in elasticity coefficient of epoxy com
... Show More