This comprehensive review examines the efficacy and safety of tumor necrosis factor-alpha (TNF-α) inhibitors in treating various autoimmune diseases, and focuses on their application in Iraqi patients. Elevated TNF-α levels are linked to autoimmune disorders, leading to the development of anti-TNF-α therapies such as infliximab, etanercept, adalimumab, certolizumab pegol, and golimumab, which have gained FDA approval for conditions like psoriasis, in¬flammatory bowel disease, ankylosing spondylitis, and rheumatoid arthritis. While these therapies demonstrate sig¬nificant therapeutic benefits, including improved quality of life and disease management, they also carry risks, such as increased susceptibility to infections and potential malignancies. The review highlights the variable patient re¬sponses to TNF-α inhibitors, influenced by pharmacokinetic and pharmacodynamic factors as well as genetic varia¬tions. The rise of anti-drug antibodies and inadequate drug concentrations are common challenges observed, empha¬sizing the need for therapeutic drug monitoring. Safety profiles of TNF-α inhibitors are generally favorable, but adverse effects (including infections and infusion reactions) have been reported. Genetic factors, such as polymorphisms in the TNF-α gene, may also play a role in the treatment responsiveness and adverse effects, suggesting the potential for personalized medicine approaches. While TNF-α inhibitors effectively manage autoimmune diseases in Iraqi pa¬tients, further research is warranted in order to optimize treatment strategies, assess long-term safety, and explore genetic influences on therapy outcomes. The findings underscore the importance of individualized treatment plans so as to enhance the efficacy and minimize the risks associated with these biologic therapies.
The use of Near-Surface Mounted (NSM) Carbon-Fiber-Reinforced Polymer (CFRP) strips is an efficient technology for increasing flexural and shear strength or for repairing damaged Reinforced Concrete (RC) members. This strengthening method is a promising technology. However, the thin layer of concrete covering the NSM-CFRP strips is not adequate to resist heat effect when directly exposed to a fire or at a high temperature. There is clear evidence that the strength and stiffness of CFRPs severely deteriorate at high temperatures. Therefore, in terms of fire resistance, the NSM technique has a significant defect. Thus, it is very important to develop a set of efficient fire protection systems to overcome these disadvantages. This pape
... Show MoreThe research discussed the possibility of adsorption of Brilliant Blue Dye (BBD) from wastewater using 13X zeolite adsorbent, which is considered a byproduct of the production process of potassium carbonate from Iraqi potash raw materials. The 13X zeolite adsorbent was prepared and characterized by X-ray diffraction that showed a clear match with the standard 13X zeolite. The crystallinity rate was 82.15% and the crystal zeolite size was 5.29 nm. The surface area and pore volume of the obtained 13X zeolite were estimated. The prepared 13X zeolite showed the ability to remove BBD contaminant from wastewater at concentrations 5 to 50 ppm and the removal reached 96.60% at the lower pollutant concentration. Adsorption measurements versus tim
... Show MoreThe present paper addresses cultivation of Chlorella vulgaris microalgae using airlift photobioreactor that sparged with 5% CO2/air. The experimental data were compared with that obtained from bioreactor aerated with air and unsparged bioreactor. The results showed that the concentration of biomass is 0.36 g l-1 in sparged bioreactor with CO2/air, while, the concentration of biomass reached to 0.069 g l-1 in the unsparged bioreactor. They showed also that aerated bioreactor with CO2/air gives more biomass production even the bioreactor was aerated with air. This study proved that application of sparging system for cultivation of Chlorella vulgaris microalgae using either CO2/air mixture or air has a significant growth rate, since the biorea
... Show MoreNews headlines are key elements in spreading news. They are unique texts written in a special language which enables readers understand the overall nature and importance of the topic. However, this special language causes difficulty for readers in understanding the headline. To illuminate this difficulty, it is argued that a pragmatic analysis from a speech act theory perspective is a plausible tool for a headline analysis. The main objective of the study is to pragmatically analyze the most frequently employed types of speech acts in the news headlines covering COVID-19 in Aljazeera English website. To this end, Bach and Harnish's (1979) Taxonomy of Speech Acts has been adopted to analyze the data. Thirty headlines have been collected f
... Show MoreAbstract—The upper limb amputation exerts a significant burden on the amputee, limiting their ability to perform everyday activities, and degrading their quality of life. Amputee patients’ quality of life can be improved if they have natural control over their prosthetic hands. Among the biological signals, most commonly used to predict upper limb motor intentions, surface electromyography (sEMG), and axial acceleration sensor signals are essential components of shoulder-level upper limb prosthetic hand control systems. In this work, a pattern recognition system is proposed to create a plan for categorizing high-level upper limb prostheses in seven various types of shoulder girdle motions. Thus, combining seven feature groups, w
... Show MoreThis work is an experimental investigation for single basin-single slope solar still coupled with an evacuated tube solar collector. The work is carried out under the climatic conditions of Baghdad city (33.2456º North and East latitude, 44.3337º longitude) through certain days of the months of the year 2019 to study the impact of using evacuated tube solar collector on the daily productivity and efficiency under the outdoors climatic conditions. It was found that using the evacuated tube solar collector increase daily productivity from 2.175 kg/ to 2.95 kg/ for 9 hours (35.63 %) for clear days, also an enhancement about 10.97 % in daily efficiency.
We study the physics of flow due to the interaction between a viscous dipole and boundaries that permit slip. This includes partial and free slip, and interactions near corners. The problem is investigated by using a two relaxation time lattice Boltzmann equation with moment-based boundary conditions. Navier-slip conditions, which involve gradients of the velocity, are formulated and applied locally. The implementation of free-slip conditions with the moment-based approach is discussed. Collision angles of 0°, 30°, and 45° are investigated. Stable simulations are shown for Reynolds numbers between 625 and 10 000 and various slip lengths. Vorticity generation on the wall is shown to be affected by slip length, angle of incidence,
... Show More