Silver Indium Aluminum Selenium AgIn1xAlxSe2 AIAS for x=01 thin films was deposited by thermal evaporation at RT and different︣︢︡ ︠︣1thickness 100 150 and 200 nm on the glass Substrate and p2Si wafer to produce AIAS/p3Si heterojunctionsolarcell4 Structural optical electrical and photovoltaicproperties6 are investigated for the samples XRD analysis reveals that all the deposited AIAS films show polycrystalline structure without any change due to increase of thickness Average diameter and roughness calculated from AFM images shows an increase in its value with increasing thickness The optical absorbance and transmittance for samples are measured using a spectrometer type UV Visible 1800 spectra1photometer to study the energy6gap The electricalproperties7of heterojunction were obtained by IV8 dark and illuminated9 and C10Vmeasurement The ideality1 factor and the saturation2current density were calculated Under illuminated3the open circuit voltage Voc4 short circuit current density Jsc6 fill factor 6FF and quantum efficiencies were calculated The builtin potential 7Vbi carrier concentration and depletion width are measured with different9 thickness
Semiconductor-based photocatalytic processes are widely applied as ecofriendly technology for degrading organic pollutants. Establishing photocatalytic heterojunctions with Z-type photocarriers transfer pathways is projected to be a superb strategy to enhance photocatalytic behavior. In this paper, novel and stable (0D/2D) heterojunctions of CoS-embedded boron-doped g-C3N4 (CoS/BCN) with a high rate of charges transfer/separation were assembled for degradation of malachite green dye (MG). The CoS/BCN photocatalyst achieves a photodegradation efficiency of 96.9 % within 1 h of LED illumination, which is 2.5 and 1.4-fold enhancement compared with bare g-C3N4 and BCN, respectively. Besides, the results of species-trapping trials exhibited that
... Show MoreThis work concerns the synthesis of two types of composites based on antimony oxide named (Sb2O3):(WO3, In2O3). Thin films were fabricated using pulsed laser deposition. The compositional analysis was explored using Fourier transform infrared spectrum (FTIR), which confirms the existence of antimony, tungsten, and indium oxides in the prepared samples. The hall effect measurement showed that antimony oxide nanostructure thin films are p-type and gradually converted to n-type by the addition of tungsten oxide, while they are converted almost instantly to n-type by the addition of indium oxide. Different heterojunction solar cells were prepared from (Sb2O3:WO
... Show MoreDust and bird residue are problems impeding the operation of solar street lighting systems, especially in semi-desert areas, such as Iraq. The system in this paper was designed and developed locally using simple and inexpensive materials. The system runs automatically. It Connects to solar panels used in solar street lighting, and gets the required electricity from the same solar system. Solar panels are washed with dripping water in less than half a minute by this system. The cleaning period can also be controlled. It can also control, sensing the amount of dust the system operates. The impact of different types of falling dust on panels has also been studied. This was collected from different winds and studied their impact o
... Show MoreThe present paper is an experimental study to improve the productivity of the conventional solar still. This done by modifying conventional still in a way that the distilled basin is larger than distillation basin, thus providing an increase in the condensation surface and speeding up the condensation process. Moreover, increase in the dimensions of the distilled base helps coupling reflective panels to the distilled base to reflect incident solar radiation to the distillation basin. For this purpose , two solar stills were made, one conventional designand another made according to the proposed design. The two solar stills were tested during the period from February to July 2009 under varying weather conditions of Basra, Iraq (latitude o
... Show MoreThe systems cooling hybrid solar uses solar collector to convert solar energy into the source of heat for roasting Refrigerant outside of the compressor and this process helps in the transformation of Refrigerant from the gas to a liquid state in two-thirds the top of the condenser instead of two-thirds the bottom of the condenser as in Conventional cooling systems and this in turn reduces the energy necessary to lead the process of cooling. The system cooling hybrid use with a capacity of 1 ton and Refrigerant type R22 and the value of current drawn by the system limits (3.9-4.2A), the same value of electric current calculated by the system are Conventional within this atmosphere of Iraq, and after taking different readings
... Show MoreRenewable energy resources have become a promissory alternative to overcome the problems related to atmospheric pollution and limited sources of fossil fuel energy. The technologies in the field of renewable energy are used also to improve the ventilation and cooling in buildings by using the solar chimney and heat exchanger. This study addresses the design, construction and testing of a cooling system by using the above two techniques. The aim was to study the effects of weather conditions on the efficiency of this system which was installed in Baghdad for April and May 2020. The common weather in these months is hot in Baghdad. The test room of the design which has a size of 1 m3 was situated to face the geographical south. The te
... Show MoreThere have been many advances in the solar chimney power plant since 1930 and the first pilot work was built in Spain (Manzanares) that produced 50 KW. The solar chimney power plant is considered of a clean power generation that needs to be investigated to enhance the performance by studying the effect of changing the area of passage of air to enhance the velocity towards the chimney to maximize design velocity. In this experimental and numerical study, the reduction area of solar collector was investigated. The reduction area that mean changing the height of glass cover from the absorbing plate (h1=3.8cm, h2=2.6cm and h3=1.28cm). The numerical study was performed using ANSYS Fluent software package (version 14.0) to solve go
... Show MoreTheoretical calculation of the electronic current at N 3 contact with TiO 2 solar cell devices ARTICLES YOU MAY BE INTERESTED IN Theoretical studies of electronic transition characteristics of senstizer molecule dye N3-SnO 2 semiconductor interface AIP Conference. Available from: https://www.researchgate.net/publication/362813854_Theoretical_calculation_of_the_electronic_current_at_N_3_contact_with_TiO_2_solar_cell_devices_ARTICLES_YOU_MAY_BE_INTERESTED_IN_Theoretical_studies_of_electronic_transition_characteristics_of_senstiz [accessed May 01 2023].
This work was conducted to study the coefficient of performance for solar absorption refrigeration by using direct solar energy using aqueous ammonia 0.45 mass fraction (ammonia – water).The experiments were carried out in solar absorption system .The system consisted of solar collector generator (0.25 m × 0.25 m × 0.04m) and condenser cooled by a water bath followed by liquid receiver and evaporator. The results showed that the maximum generator temperature was (92° - 97°) during June 2009, and the minimum evaporator temperature was (5°C - 10°C) for aqua ammonia system.. It was, also, found that the coefficient of performance, cooling ratio and amount of cooling obtainable increased with increasing maximum generator temperature
... Show More