This paper presents a fuzzy logic controller for a two-tank level control system, which is a process with a dead time. The fuzzy controller is a proportional-integral (PI-like) fuzzy controller which is suitable for steady state behavior of the system. Transient behavior of the system was improved without the need for a derivative action by suitable change in the rule base of the controller. Simulation results showed the step response of the two-tank level control system when this controller was used to control this plant and the effect of the dead time on the response of the system.
Medicine is one of the fields where the advancement of computer science is making significant progress. Some diseases require an immediate diagnosis in order to improve patient outcomes. The usage of computers in medicine improves precision and accelerates data processing and diagnosis. In order to categorize biological images, hybrid machine learning, a combination of various deep learning approaches, was utilized, and a meta-heuristic algorithm was provided in this research. In addition, two different medical datasets were introduced, one covering the magnetic resonance imaging (MRI) of brain tumors and the other dealing with chest X-rays (CXRs) of COVID-19. These datasets were introduced to the combination network that contained deep lea
... Show MoreThe propagation of laser beam in the underdense deuterium plasma has been studied via computer simulation using the fluid model. An appropriate computer code “HEATER” has been modified and is used for this purpose. The propagation is taken to be in a cylindrical symmetric medium. Different laser wavelengths (1 = 10.6 m, 2 = 1.06 m, and 3 = 0.53 m) with a Gaussian pulse type and 15 ns pulse widths have been considered. Absorption energy and laser flux have been calculated for different plasma and laser parameters. The absorbed laser energy showed maximum for = 0.53 m. This high absorbitivity was inferred to the effect of the pondermotive force.
Zadah in [1] introduced the notion of a fuzzy subset A of a nonempty set S as a mapping from S into [0,1], Liu in [2] introduced the concept of a fuzzy ring, Martines [3] introduced the notion of a fuzzy ideal of a fuzzy ring. A non zero proper ideal I of a ring R is called an essential ideal if I  J  (0), for any non zero ideal J of R, [4]. Inaam in [5] fuzzified this concept to essential fuzzy ideal of fuzzy ring and gave its basic properties. Nada in [6] introduced and studied notion of semiessential ideal in a ring R, where a non zero i
... Show MoreThroughout this paper, we introduce the notion of weak essential F-submodules of F-modules as a generalization of weak essential submodules. Also we study the homomorphic image and inverse image of weak essential F-submodules.
In this paper, a fixed point theorem of nonexpansive mapping is established to study the existence and sufficient conditions for the controllability of nonlinear fractional control systems in reflexive Banach spaces. The result so obtained have been modified and developed in arbitrary space having Opial’s condition by using fixed point theorem deals with nonexpansive mapping defined on a set has normal structure. An application is provided to show the effectiveness of the obtained result.
This paper is focused on orthogonal function approximation technique FAT-based adaptive backstepping control of a geared DC motor coupled with a rotational mechanical component. It is assumed that all parameters of the actuator are unknown including the torque-current constant (i.e., unknown input coefficient) and hence a control system with three motor control modes is proposed: 1) motor torque control mode, 2) motor current control mode, and 3) motor voltage control mode. The proposed control algorithm is a powerful tool to control a dynamic system with an unknown input coefficient. Each uncertain parameter/term is represented by a linear combination of weighting and orthogonal basis function vectors. Chebyshev polynomial is used
... Show Moreconventional FCM algorithm does not fully utilize the spatial information in the image. In this research, we use a FCM algorithm that incorporates spatial information into the membership function for clustering. The spatial function is the summation of the membership functions in the neighborhood of each pixel under consideration. The advantages of the method are that it is less
sensitive to noise than other techniques, and it yields regions more homogeneous than those of other methods. This technique is a powerful method for noisy image segmentation.