The present study describes employing zero-, 1st - and 2nd -order derivative spectrophotometric methods have been developed for determination of lorazepam (LORA) and clonazepam (CLON) in commercially available tablets. LORA was determined by means of 1st (D1), 2nd (D2) derivative spectrophotometric techniques using zero cross, peak height, and Peak area. D1 used for the determination of CLON by using zero cross and peak height while D2 (zero cross) was used for the determination of CLON. The method was established to be linear in concentration containing different ratios of LORA and CLON range of (20-200 mg/L) and (5-35 mg/L) at wavelength range (250 -370 nm), (210-370nm) respectively. The proposed techniques are highly sensitive, precise a
... Show MoreA new spectrophotometric method for individual and simultaneous determination of cefixime and cephalexin depending on the first and second derivative mode techniques. The first and second derivative spectra of these compounds permitted individual and simultaneous determination of cefixime and cephalexin in concentration interval of (4– 24μg.ml-1 ) by measuring the amplitude of peak-to-base line, pea to peak at certain wavelengths and the area under peak at selected spectrum intervals. The methods showed reasonable precision and accuracy and have been applied to determine cefixime and cephalexin in two different pharmaceutical preparations.
A simple, precise and accurate spectrophotometric method has been developed for simultaneous estimation of sulfanilamide and furosemide in their mixture by using first and second order derivative method in the ultraviolet region. The method depends on first and second derivative spectrophotometry, with zero-crossing and peak to base line and peak area measurements. The first derivative amplitudes at 214, 238 and 266 nm were selected for the assay of sulfanilamide and 240, 260, 284, 314 and 352 nm for furosemide. Peak area at 201222, 222-251 and 251-281 nm selected for estimation of sulfanilamide and at 229-249, 249270, 270-294, 294-333 and 333-382 nm for furosemide. The second derivative amplitudes at 220, 252 and 274 nm for sulfanilamid
... Show MoreA new Spectrophotometric method, is for individual and simultaneous determination of Ciprofloxacin hydrochloride(CIP) and Mebeverin hydrochloride(MEB) by the first and second derivative mode techniques. The first and second derivative spectra of these compounds permitted individual and simultaneous determination of CIP and MEB in concentration range of (4-28µg/mL) by measuring the amplitude of peak- to- base line and the area under peak at selected spectrum intervals. The methods showed a reasonable precision and accuracy and have been applied to determine CIP and MEB in four different pharmaceutical preparations.
A new Spectrophotometric method, is for individual and simultaneous determination of Ciprofloxacin hydrochloride(CIP) and Mebeverin hydrochloride(MEB) by the first and second derivative mode techniques. The first and second derivative spectra of these compounds permitted individual and simultaneous determination of CIP and MEB in concentration range of (4-28μg/mL) by measuring the amplitude of peak- to- base line and the area under peak at selected spectrum intervals. The methods showed a reasonable precision and accuracy and have been applied to determine CIP and MEB in four different pharmaceutical preparations.
Two new simultaneous spectrophotometric methods for determination of Olanzapine and Ephedrine depend on third (D3) and fourth (D4) derivative of zero spectrum of two drugs were developed. The peak – to- base line, peak to peak and area under peak were found proportional with concentration of the drugs up to (4-24 µg/ml-1) at known experimental wavelengths. The results showed that the method was precise and accurate through RSD% (0.5026-4.0273),( 0.2399 6.9888) and R.E %(-2.3889-0.8333) ,) -2.9444-0.2273) while the LOD (0.0057- 0.8510 μg.ml-1), ( 0.0953-0.9844 μg.ml-1) and LOQ (0.0173- 2.5788μg.ml-1),( 0.5774-2.9829 μg.ml-1) were found for the two drugs respectively. The methods were applied i
... Show MoreQuick and accurate quaternary mixture resolution of furosemide (FURO), carbamazepine (CARB), diazepam (DIAZ) and carvedilol (CARV) by using derivative spectrophotometric method was performed. FURO and CARV were determined by means of first (D1), second (D2), third (D3) and fourth (D4) derivative spectrophotometric methods, CARB was determined by using D1, D2, D3 derivatives, while D1 and D2 were used for the determination of DIAZ. The recommended methods were verified using laboratory prepared mixtures and then successfully applied for the pharmaceutical formulations analysis of the cited drugs. The results obtained revealed the efficiency of the proposed methods as quantitative tool of analysis of the quaternary mixture with no requirement
... Show MoreA simple analytical method was used in the present work for the simultaneous quantification of Ciprofloxacin and Isoniazid in pharmaceutical preparations. UV-Visible spectrophotometry has been applied to quantify these compounds in pure and mixture solutions using the first-order derivative method. The method depends on the first derivative spectrophotometry using zero-cross, peak to baseline, peak to peak and peak area measurements. Good linearity was shown in the concentration range of 2 to 24 μg∙mL-1 for Ciprofloxacin and 2 to 22 μg∙mL-1 for Isoniazid in the mixture, and the correlation coefficients were 0.9990 and 0.9989 respectively using peak area mode. The limits of detection (LOD) and limits of quantification (LOQ) wer
... Show MoreA simple, economical and selective method employing ion pair dispersive liquid−liquid microextraction (DLLME) coupled with spectrophotometric determination of carbamazepine (CBZ) in pharmaceutical preparations and biological samples was developed. The method is based on reduction of Mo(VI) to Mo(V) using a combination of ammonium thiocyanate and ascorbic acid in acidic medium to form a red binary Mo(V) thiocyanate complex. After addition of CBZ to the complex, extraction of the formed CBZ−Mo(V)−(SCN)6 was performed using a mixture of methylene chloride and methanol. Then, the measurement of target complex was performed at the wavelength of 470 nm. The important extraction parameters affecting the efficiency of DLLME were studied and o
... Show More