Quick and accurate quaternary mixture resolution of furosemide (FURO), carbamazepine (CARB), diazepam (DIAZ) and carvedilol (CARV) by using derivative spectrophotometric method was performed. FURO and CARV were determined by means of first (D1), second (D2), third (D3) and fourth (D4) derivative spectrophotometric methods, CARB was determined by using D1, D2, D3 derivatives, while D1 and D2 were used for the determination of DIAZ. The recommended methods were verified using laboratory prepared mixtures and then successfully applied for the pharmaceutical formulations analysis of the cited drugs. The results obtained revealed the efficiency of the proposed methods as quantitative tool of analysis of the quaternary mixture with no requirements for sample neither pretreatment nor preliminary separation of analytes from the pharmaceutical preparations.
A simple, precise and accurate spectrophotometric method has been developed for simultaneous estimation of sulfanilamide and furosemide in their mixture by using first and second order derivative method in the ultraviolet region. The method depends on first and second derivative spectrophotometry, with zero-crossing and peak to base line and peak area measurements. The first derivative amplitudes at 214, 238 and 266 nm were selected for the assay of sulfanilamide and 240, 260, 284, 314 and 352 nm for furosemide. Peak area at 201222, 222-251 and 251-281 nm selected for estimation of sulfanilamide and at 229-249, 249270, 270-294, 294-333 and 333-382 nm for furosemide. The second derivative amplitudes at 220, 252 and 274 nm for sulfanilamid
... Show MoreSimultaneous determination of Furosemide, Carbamazepine, Diazepam, and Carvedilol in bulk and pharmaceutical formulation using the partial least squares regression (PLS-1 and PLS-2) is described in this study. The two methods were successfully applied to estimate the four drugs in their quaternary mixture using UV spectral data of 84synthetic mixtures in the range of 200-350nm with the intervals Δλ=0.5nm. The linear concentration range were 1-20 μg.mL-1 for all, with correlation coefficient (R2) and root mean squares error for the calibration (RMSE) for FURO, CARB, DIAZ, and CARV were 0.9996, 0.9998, 0.9997, 0.9997, and 0.1128, 0.1292, 0.1868,0.1562 respectively for PLS-1, and for PLS-2 were 0.9995, 0.9999, 0.9997, 0.9998, and 0.1127, 0.
... Show MoreA simple reverse-phase high performance liquid chromatographic method for the simultaneous analysis (separation and quantification) of furosemide (FURO), carbamazepine (CARB), diazepam (DIAZ) and carvedilol (CARV) has been developed and validated. The method was carried out on a NUCLEODUR® 100-5 C18ec column (250 x 4.6 mm, i. d.5μm), with a mobile phase comprising of acetonitrile: deionized water (50: 50 v/v, pH adjusted to 3.6 ±0.05 with acetic acid) at a flow rate 1.5 mL.min-1 and the quantification was achieved at 226 nm. The retention times of FURO, CARB, DIAZ and CARV were found to be 1.90 min, 2.79 min, 5.39 min and 9.56 min respectively. The method was validated in terms of linearity, accuracy, precision, limit of detection and li
... Show MoreA new Spectrophotometric method, is for individual and simultaneous determination of Ciprofloxacin hydrochloride(CIP) and Mebeverin hydrochloride(MEB) by the first and second derivative mode techniques. The first and second derivative spectra of these compounds permitted individual and simultaneous determination of CIP and MEB in concentration range of (4-28μg/mL) by measuring the amplitude of peak- to- base line and the area under peak at selected spectrum intervals. The methods showed a reasonable precision and accuracy and have been applied to determine CIP and MEB in four different pharmaceutical preparations.
A new Spectrophotometric method, is for individual and simultaneous determination of Ciprofloxacin hydrochloride(CIP) and Mebeverin hydrochloride(MEB) by the first and second derivative mode techniques. The first and second derivative spectra of these compounds permitted individual and simultaneous determination of CIP and MEB in concentration range of (4-28µg/mL) by measuring the amplitude of peak- to- base line and the area under peak at selected spectrum intervals. The methods showed a reasonable precision and accuracy and have been applied to determine CIP and MEB in four different pharmaceutical preparations.
A new spectrophotometric method for individual and simultaneous determination of cefixime and cephalexin depending on the first and second derivative mode techniques. The first and second derivative spectra of these compounds permitted individual and simultaneous determination of cefixime and cephalexin in concentration interval of (4– 24μg.ml-1 ) by measuring the amplitude of peak-to-base line, pea to peak at certain wavelengths and the area under peak at selected spectrum intervals. The methods showed reasonable precision and accuracy and have been applied to determine cefixime and cephalexin in two different pharmaceutical preparations.
The present study describes employing zero-, 1st - and 2nd -order derivative spectrophotometric methods have been developed for determination of lorazepam (LORA) and clonazepam (CLON) in commercially available tablets. LORA was determined by means of 1st (D1), 2nd (D2) derivative spectrophotometric techniques using zero cross, peak height, and Peak area. D1 used for the determination of CLON by using zero cross and peak height while D2 (zero cross) was used for the determination of CLON. The method was established to be linear in concentration containing different ratios of LORA and CLON range of (20-200 mg/L) and (5-35 mg/L) at wavelength range (250 -370 nm), (210-370nm) respectively. The proposed techniques are highly sensitive, precise a
... Show MoreA simple analytical method was used in the present work for the simultaneous quantification of Ciprofloxacin and Isoniazid in pharmaceutical preparations. UV-Visible spectrophotometry has been applied to quantify these compounds in pure and mixture solutions using the first-order derivative method. The method depends on the first derivative spectrophotometry using zero-cross, peak to baseline, peak to peak and peak area measurements. Good linearity was shown in the concentration range of 2 to 24 μg∙mL-1 for Ciprofloxacin and 2 to 22 μg∙mL-1 for Isoniazid in the mixture, and the correlation coefficients were 0.9990 and 0.9989 respectively using peak area mode. The limits of detection (LOD) and limits of quantification (LOQ) wer
... Show More