Over the past few years, ear biometrics has attracted a lot of attention. It is a trusted biometric for the identification and recognition of humans due to its consistent shape and rich texture variation. The ear presents an attractive solution since it is visible, ear images are easily captured, and the ear structure remains relatively stable over time. In this paper, a comprehensive review of prior research was conducted to establish the efficacy of utilizing ear features for individual identification through the employment of both manually-crafted features and deep-learning approaches. The objective of this model is to present the accuracy rate of person identification systems based on either manually-crafted features such as DCT, DWT, DFT, PCA, LBP, SURF, SIFT, etc., or deep learning techniques such as CNN, DNN, Alex Net CNN, VGG-16, SVM, Squeeze Net, Google Net, MobileNetV2, etc. The effort will make it easier for researchers, especially those who are new to the field, to have a brief understanding of the trend of employing deep learning in a trustworthy biometric for the identification and recognition of human identification.
Mobile-based human emotion recognition is very challenging subject, most of the approaches suggested and built in this field utilized various contexts that can be derived from the external sensors and the smartphone, but these approaches suffer from different obstacles and challenges. The proposed system integrated human speech signal and heart rate, in one system, to leverage the accuracy of the human emotion recognition. The proposed system is designed to recognize four human emotions; angry, happy, sad and normal. In this system, the smartphone is used to record user speech and send it to a server. The smartwatch, fixed on user wrist, is used to measure user heart rate while the user is speaking and send it, via Bluetooth,
... Show MoreAccording to the famous saying of the medieval physician Paracelsus, "There is no substance without poison. Only the dose determines the extent of the toxic effect." Here, the effect of monosodium glutamate (MSG) on human health and the risks to the health of its frequent use in the short term was addressed and the long term was evaluated according to the studies of several researchers specializing in this regard. Monosodium glutamate (MSG) is known as one of the most popular food additives that classified as a flavor enhancer. Parts of the evidence were reviewed from the literature explaining its effect on immune system cells in addition to metabolic disorders by exposing individuals to obesity and what is known as metabolic syndrome, as w
... Show MoreThere is various human biometrics used nowadays, one of the most important of these biometrics is the face. Many techniques have been suggested for face recognition, but they still face a variety of challenges for recognizing faces in images captured in the uncontrolled environment, and for real-life applications. Some of these challenges are pose variation, occlusion, facial expression, illumination, bad lighting, and image quality. New techniques are updating continuously. In this paper, the singular value decomposition is used to extract the features matrix for face recognition and classification. The input color image is converted into a grayscale image and then transformed into a local ternary pattern before splitting the image into
... Show MoreNumeral recognition is considered an essential preliminary step for optical character recognition, document understanding, and others. Although several handwritten numeral recognition algorithms have been proposed so far, achieving adequate recognition accuracy and execution time remain challenging to date. In particular, recognition accuracy depends on the features extraction mechanism. As such, a fast and robust numeral recognition method is essential, which meets the desired accuracy by extracting the features efficiently while maintaining fast implementation time. Furthermore, to date most of the existing studies are focused on evaluating their methods based on clean environments, thus limiting understanding of their potential a
... Show MoreIn this paper, the goal of proposed method is to protect data against different types of attacks by unauthorized parties. The basic idea of proposed method is generating a private key from a specific features of digital color image such as color (Red, Green and Blue); the generating process of private key from colors of digital color image performed via the computing process of color frequencies for blue color of an image then computing the maximum frequency of blue color, multiplying it by its number and adding process will performed to produce a generated key. After that the private key is generated, must be converting it into the binary representation form. The generated key is extracted from blue color of keyed image then we selects a c
... Show MoreVitamins k is an important fat-soluble vitamin that can be obtained from plants, bacteria and animals and is necessary for the blood clotting. It plays a key function as a cofactor in the synthesizing of blood clotting proteins in the liver; recently, the interest for its functions in extra-hepatic tissue has increased. Vitamin k deficiency is usually caused by abnormal absorption rather than in the lack of vitamin in food. Apart from its impact on clotting, chronic subclinical deficiency of vitamin K maybe a risk factor for many diseases such as osteoporosis, atherosclerosis, cancer, insulin resistance, neurodegenerative diseases and others, while current food intake guidelines be focused on the daily dose necessary to avoid blood loss.
... Show MoreIn this paper we investigate the automatic recognition of emotion in text. We propose a new method for emotion recognition based on the PPM (PPM is short for Prediction by Partial Matching) character-based text compression scheme in order to recognize Ekman’s six basic emotions (Anger, Disgust, Fear, Happiness, Sadness, Surprise). Experimental results with three datasets show that the new method is very effective when compared with traditional word-based text classification methods. We have also found that our method works best if the sizes of text in all classes used for training are similar, and that performance significantly improves with increased data.
In Computer-based applications, there is a need for simple, low-cost devices for user authentication. Biometric authentication methods namely keystroke dynamics are being increasingly used to strengthen the commonly knowledge based method (example a password) effectively and cheaply for many types of applications. Due to the semi-independent nature of the typing behavior it is difficult to masquerade, making it useful as a biometric. In this paper, C4.5 approach is used to classify user as authenticated user or impostor by combining unigraph features (namely Dwell time (DT) and flight time (FT)) and digraph features (namely Up-Up Time (UUT) and Down-Down Time (DDT)). The results show that DT enhances the performance of digraph features by i
... Show More