Preferred Language
Articles
/
r4Y6hIQBIXToZYALI0JL
Experimental Investigation of the Behavior of Self-Form Segmental Concrete Masonry Arches
...Show More Authors

This research aims to introduce a new technique-off-site and self-form segmental concrete masonry arches fabrication, without the need of construction formwork or centering. The innovative construction method in the current study encompasses two construction materials forms the self-form masonry arches, wedge-shape plain concrete voussoirs, and carbon fiber-reinforced polymer (CFRP) composites. The employment of CFRP fabrics was for two main reasons: bonding the voussoirs and forming the masonry arches. In addition, CFRP proved to be efficient for strengthening the extrados of the arch rings under service loadings. An experimental test was conducted on four sophisticated masonry arch specimens. The research parameters were the Keystone thickness and the strengthening of the self-form arch ring at the intrados. The major test finding was that the use of thicker Keystone alters the behavior of the self-form arch and considerably increases the load carrying capacity by 79%. Partial strengthening of the intrados with CFRP fabrics of typical arch ring Keystone resulted considerable increase in the debonding load of fabrication CFRP sheets by 81%, increase in the localized crushing load by 13% and considerably increase voussoir sliding load by 107%. © 2019 by the authors.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Nov 01 2019
Journal Name
Indian Journal Of Natural Sciences
The Numerical and Experimental Work of Chaos System in Three Dimensions Phase Spaceusing Rossler Circuit
...Show More Authors

In this paper, we deal with a dynamical system that can demonstrate a chaotic attractor of Rossleroscillator. We simulate the Rosslerequations numerically then we investigate the model experimentally. Numerically, the Rossler parameter a and b were fixed and c was changed.The evolution of the system exhibits period, period-doubling, second period doubling, and chaos when control parameters are changed. This evolution can be seen by analyze the time series, the bifurcation diagrams and phase space. Experimentally, the evolution of the system exhibited the same numerical behavior by changing the resistance (Rv) in Rossler circuit that represent as control parameter.

Publication Date
Mon Dec 16 2024
Journal Name
Light & Engineering
The Design and Experimental Realization of a Laser-Based Heating System Using Recycled Laser Module
...Show More Authors

Laser is a powerful device that has a wide range of applications in fields ranging from materials science and manufacturing to medicine and fibre optic communications. One remarkable

View Publication
Publication Date
Sun Dec 30 2018
Journal Name
2018 Computing In Cardiology Conference (cinc)
Theoretical and Experimental Reflection Coefficients in Flexible Tubes as a Function of the Mach Number
...Show More Authors

The standard formulation of Wave Intensity Analysis (WIA) assumes that the flow velocity (U) in the conduit is <;<; the velocity of propagation of waves (c) in the system, and Mach number, M=U/c, is negligible. However, in the large conduit arteries, U is relatively high due to ventricular contraction and c is relatively low due to the large compliance; thus M is > 0, and may not be ignored. Therefore, the aim of this study is to identify experimentally the relationship between M and the reflection coefficient in vitro. Combinations of flexible tubes, of 2 m in length with isotropic and uniform circular cross sectional area along their longitudinal axes, were used to present mother and daughter tubes to produce a range of reflection coeffic

... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sun Mar 01 2009
Journal Name
Al-khwarizmi Engineering Journal
Investigation of Thermal Stress Distribution in Laser Spot Welding Process
...Show More Authors

The objective of this paper was to study the laser spot welding process of low carbon steel sheet. The investigations were based on analytical and finite element analyses. The analytical analysis was focused on a consistent set of equations representing interaction of the laser beam with materials. The numerical analysis based on 3-D finite element analysis of heat flow during laser spot welding taken into account the temperature dependence of the physical properties and latent heat of transformations using ANSYS code V.10.0 to simulate the laser welding process. The effect of laser operating parameters on the results of the temperature profile were studied in addition to the effect on thermal stresses  and dimensions of the laser w

... Show More
View Publication Preview PDF
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
Investigation and Study of Photonic Current Rate in Bremsstrahlung process
...Show More Authors

In this paper, we investigate and study quantum theoretical of quark-gluon interaction modeling in QGP matter formatted. In theoretical modeling, we can use a flavor number, strength coupling, critical energy Tc = 190 MeV, system energy (400-650)MeV, fugacity of quark and gluon, and photon energy in range of 1-10 GeV parameter to calculation and investigation spectrum of photon rate. We calculation and study the photon rate produced through bremsstrahlung processes from the stable QGP matter. The photon rate production from cg → dgy systems at bremsstrahlung processes are found to be increased with increased fugacity, decreased strength coupling, decreased the photons energy and temperature of system. The photons rate in cg → dgy is inc

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (2)
Scopus Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Aip Conference Proceedings
Investigation hydraulic performance of splash fills packing in cooling tower
...Show More Authors

Heat is one of the most energy forms emitted to atmosphere by industrial processes. Water is considered to be the best material to reduce heat energy since its available in nature in abundance and has the ability to absorb heat efficiently. Cooling towers are ideal alternatives to re-cool hot water instead of throwing it especially in places that lack natural water resources or when there are environmental precautions because water with high temperature would be harmful to the ecosystem when it recycled to natural resources such as rivers and lakes. Also, cooling towers considered economically feasible when using west water. This paper interests with hydraulic characteristics of a counter flow wet cooling tower which was investigated experi

... Show More
View Publication
Scopus (6)
Crossref (3)
Scopus Crossref
Publication Date
Fri May 03 2019
Journal Name
Photonics
Design Investigation of 4 × 4 Nonblocking Hybrid Plasmonic Electrooptic Switch
...Show More Authors

This paper proposes a compact, plasmonic-based 4 × 4 nonblocking switch for optical networks. This device uses six 2 × 2 plasmonic Mach-Zehnder switch (MZS), whose arm waveguide is supported by a JRD1 polymer layer as a high electro-optic coefficient material. The 4 × 4 switch is designed in COMSOL environment for 1550 nm wavelength operation. The performance of the proposed switch outperforms those of conventional (nonplasmonic) counterparts. The designed switch yields a compact structure ( 500 × 70   µ m 2 ) having V π L = 12   V · µ m , 1.5 THz optical bandwidth, 7.7 dB insertion loss, and −26.5 dB crosstalk. The capability of the switch to route 8 × 40 Gbps WDM signal is demonstrated successfully.

... Show More
View Publication
Scopus (3)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Numerical Investigation of Drag Reduction Techniques in a Car Model
...Show More Authors
Abstract<p>Reducing the drag force has become one of the most important concerns in the automotive industry. This study concentrated on reducing drag through use of some external modifications of passive flow control, such as vortex generators, rear under body diffuser slices and a rear wing spoiler. The study was performed at inlet velocity (V=10,20,30,40 m/s) which correspond to an incompressible car model length Reynolds numbers (Re=2.62×10<sup>5</sup>, 5.23×10<sup>5</sup>, 7.85×10<sup>5</sup> and 10.46×10<sup>5</sup>), respectively and we studied their effect on the drag force. We also present a theoretical study finite volume method (FVM) of solvi</p> ... Show More
View Publication
Scopus (8)
Crossref (7)
Scopus Crossref
Publication Date
Sat Dec 31 2022
Journal Name
Mathematical Modelling Of Engineering Problems
Investigation of Energy Efficient Clustering Algorithms in WSNs: A Review
...Show More Authors

In recent years, Wireless Sensor Networks (WSNs) are attracting more attention in many fields as they are extensively used in a wide range of applications, such as environment monitoring, the Internet of Things, industrial operation control, electric distribution, and the oil industry. One of the major concerns in these networks is the limited energy sources. Clustering and routing algorithms represent one of the critical issues that directly contribute to power consumption in WSNs. Therefore, optimization techniques and routing protocols for such networks have to be studied and developed. This paper focuses on the most recent studies and algorithms that handle energy-efficiency clustering and routing in WSNs. In addition, the prime

... Show More
View Publication
Scopus (9)
Crossref (2)
Scopus Crossref
Publication Date
Mon Aug 01 2011
Journal Name
Journal Of Engineering
NUMERICAL INVESTIGATION OF LAMINAR MIXED CONVECTION IN TROMBE WALL CHANNEL
...Show More Authors

The two dimensional steady, combined forced and natural convection in vertical channel is
investigated for laminar regime. To simulate the Trombe wall channel geometry properly, horizontal
inlet and exit segments have been added to the vertical channel. The vertical walls of the channel are
maintained at constant but different temperature while horizontal walls are insulated. A finite
difference method using up-wind differencing for the nonlinear convective terms, and central
differencing for the second order derivatives, is employed to solve the governing differential
equations for the mass, momentum, and energy balances. The solution is obtained for stream
function, vorticity and temperature as dependent variables

... Show More
View Publication Preview PDF
Crossref