Preferred Language
Articles
/
r4Y6hIQBIXToZYALI0JL
Experimental Investigation of the Behavior of Self-Form Segmental Concrete Masonry Arches
...Show More Authors

This research aims to introduce a new technique-off-site and self-form segmental concrete masonry arches fabrication, without the need of construction formwork or centering. The innovative construction method in the current study encompasses two construction materials forms the self-form masonry arches, wedge-shape plain concrete voussoirs, and carbon fiber-reinforced polymer (CFRP) composites. The employment of CFRP fabrics was for two main reasons: bonding the voussoirs and forming the masonry arches. In addition, CFRP proved to be efficient for strengthening the extrados of the arch rings under service loadings. An experimental test was conducted on four sophisticated masonry arch specimens. The research parameters were the Keystone thickness and the strengthening of the self-form arch ring at the intrados. The major test finding was that the use of thicker Keystone alters the behavior of the self-form arch and considerably increases the load carrying capacity by 79%. Partial strengthening of the intrados with CFRP fabrics of typical arch ring Keystone resulted considerable increase in the debonding load of fabrication CFRP sheets by 81%, increase in the localized crushing load by 13% and considerably increase voussoir sliding load by 107%. © 2019 by the authors.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Mar 23 2020
Journal Name
Journal Of Engineering
Experimental Investigation of Thermal Performance of a Solar Chimney Provided with a Porous Absorber Plate
...Show More Authors

 

Experimental investigation of the influence of inserting the metal foam to the solar chimney to induce natural ventilation are described and analyzed in this work. To carry out the experimental test, two identical solar chimneys (without insertion of metal foam and with insertion of metal foam) are designed and placed facing south with dimensions of length× width× air gap (2 m× 1 m× 0.2 m). Four incline angles are tested (20o,30o,45o,60o) for each chimney in Baghdad climate condition (33.3o latitude, 44.4o longitude) on October, November, December 2018. The solar chimney performance is investigated by experimentally recording absorber pl

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Fri Oct 01 2021
Journal Name
Journal Of Engineering
Analytical and Experimental Study of the Piles Cap Normal and Light Weight Aerated Concrete: Literature Review
...Show More Authors

The main objective of this study is to understand the work of the pile caps made of lightweight aerated foam concrete and study the many factors affecting the ability and the capacity of the shear. The study was done by analyzing previous practical and theoretical experiences on the reinforced concrete pile caps. The previous practical results indicated that all specimens failed by shear diagonal compression or tension modes except one specimen that failed flexural-shear mode. Based on test specimens' practical results and behavior, some theoretical methods for estimating the ultimate strength of reinforced concrete pile caps have been recommended, some of which evolved into the design documents available on the subject.

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Dec 11 2021
Journal Name
Engineering, Technology & Applied Science Research
Experimental and Numerical Analysis of the Punching Shear Resistance Strengthening of Concrete Flat Plates by Steel Collars
...Show More Authors

In this study, six square reinforced concrete flat plates with dimensions of (1500×1500×100) mm were tested under a concentrated load applied on a column located at the center of the slabs. One of these slabs was the control specimen, whereas, in the others, steel angles (steel collars) were used, fixed at the connection region between the slab and the column to investigate the effect of the presence of these collars on punching shear strength. Five thicknesses were used (4, 5, 6, 8, 10mm) with constant legs of angles (75×75) mm of the steel collars to investigate the effects on the punching shear resistance with respect to the control slab. The results of the experimental study show that the punching shear resistance increased b

... Show More
Scopus (7)
Crossref (8)
Scopus Crossref
Publication Date
Sat Aug 01 2020
Journal Name
Key Engineering Materials
Systematic Design of Short-Span Segmental Beams Reinforced by CFRP Plates
...Show More Authors

The main objective of this study is to introduce a systematic design procedure for short-span segmental beams following a sophisticated ACI 440.2R-17 design procedure. The general aspects of innovative short-span segmental beams are easy to fabricate, economical and rapidly placed in pre-specified positions. Short-span segmental beams fabricated from individual precast plain-concrete blocks and CFRP plates. Recently, experimental tests performed on short-span segmental beams, by the authors, investigated CFRP plate-bonding, CFRP plate cross-sectional area, the thickness of plate-bonding epoxy resin, surface-to-surface condition of concrete blocks, as well as, interface condition of the bonding surface. The experimental program comprises tes

... Show More
View Publication
Scopus (5)
Crossref (5)
Scopus Crossref
Publication Date
Fri Jan 10 2020
Journal Name
Fibers
CFRP Laminates Reinforcing Performance of Short-Span Wedge-Blocks Segmental Beams
...Show More Authors

Two of the main advantages of segmental construction are economics, as well as the rapid construction technique. One of the forms of segmental construction, for structural elements, is the segmental beams that built-in short sections, which referred to segments. This research aims to exhibit a new technique for the fabrication of short-span segmental beams from wedge-shaped concrete segments and carbon fiber reinforced polymers (CFRP) in laminate form. The experimental campaign included eight short-span segmental beams. In this study, two selected parameters were considered. These parameters are; the number of layers of CFRP laminates and the adhesive material that used to bond segments to each other, forming short-span segmental be

... Show More
View Publication Preview PDF
Scopus (14)
Crossref (13)
Scopus Clarivate Crossref
Publication Date
Sun May 21 2023
Journal Name
Fire
Experimental and Numerical Behavior of Encased Pultruded GFRP Beams under Elevated and Ambient Temperatures
...Show More Authors

In this research, experimental and numerical studies were carried out to investigate the performance of encased glass-fiber-reinforced polymer (GFRP) beams under fire. The test specimens were divided into two peer groups to be tested under the effect of ambient and elevated temperatures. The first group was statically tested to investigate the monotonic behavior of the specimens. The second group was exposed to fire loading first and then statically tested to explore the residual behavior of the burned specimens. Adding shear connectors and web stiffeners to the GFRP beam was the main parameter in this investigation. Moreover, service loads were applied to the tested beams during the fire. Utilizing shear connectors, web stiffeners,

... Show More
Scopus (7)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Sun May 21 2023
Journal Name
Fire
Experimental and Numerical Behavior of Encased Pultruded GFRP Beams under Elevated and Ambient Temperatures
...Show More Authors

In this research, experimental and numerical studies were carried out to investigate the performance of encased glass-fiber-reinforced polymer (GFRP) beams under fire. The test specimens were divided into two peer groups to be tested under the effect of ambient and elevated temperatures. The first group was statically tested to investigate the monotonic behavior of the specimens. The second group was exposed to fire loading first and then statically tested to explore the residual behavior of the burned specimens. Adding shear connectors and web stiffeners to the GFRP beam was the main parameter in this investigation. Moreover, service loads were applied to the tested beams during the fire. Utilizing shear connectors, web stiffeners,

... Show More
View Publication
Scopus (7)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Tue Feb 01 2022
Journal Name
Civil Engineering Journal
Calibration of a New Concrete Damage Plasticity Theoretical Model Based on Experimental Parameters
...Show More Authors

The introduction of concrete damage plasticity material models has significantly improved the accuracy with which the concrete structural elements can be predicted in terms of their structural response. Research into this method's accuracy in analyzing complex concrete forms has been limited. A damage model combined with a plasticity model, based on continuum damage mechanics, is recommended for effectively predicting and simulating concrete behaviour. The damage parameters, such as compressive and tensile damages, can be defined to simulate concrete behavior in a damaged-plasticity model accurately. This research aims to propose an analytical model for assessing concrete compressive damage based on stiffness deterioration. The prop

... Show More
Scopus (22)
Crossref (14)
Scopus Clarivate Crossref
Publication Date
Fri May 01 2020
Journal Name
Journal Of Engineering
The Effects of Maximum Attapulgite Aggregate Size and Steel Fibers Content on Fresh and Some Mechanical Properties of Lightweight Self Compacting Concrete
...Show More Authors

The main objectives of this study were investigating the effects of the maximum size of coarse Attapulgite aggregate and micro steel fiber content on fresh and some mechanical properties of steel fibers reinforced lightweight self-compacting concrete (SFLWSCC). Two series of mixes were used depending on maximum aggregate size (12.5 and 19) mm, for each series three different steel fibers content were used (0.5 %, 1%, and 1.5%). To evaluate the fresh properties, tests of slump flow, T500 mm, V funnel time, and J ring were carried out. Tests of compressive strength, splitting tensile strength, flexural tensile strength, and calculated equilibrium density were done to evaluate mechanical properties. For reference mixes, the

... Show More
View Publication Preview PDF
Crossref (6)
Crossref
Publication Date
Fri May 01 2020
Journal Name
Journal Of Engineering
Effect of Maximum Size of Aggregate on the Behavior of Reinforced Concrete Beams Analyzed using Meso Scale Modeling
...Show More Authors

In this study, simply supported reinforced concrete (RC) beams were analyzed using the Extended Finite Element Method (XFEM). This is a powerful method that is used for the treatment of discontinuities resulting from the fracture process and crack propagation in concrete. The mesoscale is used in modeling concrete as a two-phasic material of coarse aggregate and cement mortar. Air voids in the cement paste will also be modeled. The coarse aggregate used in the casting of these beams is a rounded aggregate consisting of different maximum sizes. The maximum size is 25 mm in the first model, and in the second model, the maximum size is 20 mm. The compressive strength used in these beams is equal to 26 MPa.

The subje

... Show More
View Publication Preview PDF
Crossref (2)
Crossref