To study the comparative use of some soil minerals (zeolite, bentonite, phosphate rock, and limestone) in the adsorption and release of lead and its removal rates from its aqueous solutions using adsorption equations. Two laboratory experiments were carried out for the adsorption and release of lead. The adsorption experiment took 0.5 g of some of the above soil minerals. Lead was added as Pb (NO3)2 at levels of 3.0, 2.0, 1.5, 1.0, 0.5, and 0.0 mmol L-1 containing a concentration of 0.01M of calcium chloride. The experimental unit’s number was 72, the concentration of dissolved lead in the equilibrium solution was estimated and the amount of lead adsorbed was calculated. As for the lead release experiment, samples for the adsorption experiment were treated after separating filtrates from them with a calcium chloride solution with a concentration of 0.01 M. The amount of lead released was estimated. The percentage of lead removal was calculated. Results showed an increased concentration of dissolved lead in the equilibrium solution directly with increased levels of lead added to all materials. Materials were graded in concentrations of dissolved, adsorbed lead and values of maximum adsorption capacity of lead on different soil minerals surfaces as follows: zeolite > bentonite > phosphate rock > limestone, which reached 5000, 384.61, 769.23, and 2500 mg Pb kg-1, respectively. Binding energy was 0.0062, 0.0056, 0.0019, and 0.0049 L g-1, respectively. The amount of lead released from different adsorption materials varied, with the largest amount released in zeolite amounting to 322.10, 528.20, 696.90, 777.20, and 967.40 mg Pb kg-1 zeolite then bentonite, quantity reached 187.2, 272.8, 314.2, 324.0, and 375.6 mg Pb kg-1 bentonite, then phosphate rock, concentrations reached 65.80, 69.80, 77.60, 91.00, and 123.00 mg Pb kg-1 phosphate rock. Limestone came in fourth and last place in terms of the amount of lead released, concentrations were 25.10, 29.30, 35.00, 38.70, and 40.90 mg Pb L-1 for lead addition treatments of 0.5, 1.0, 1.5, 2.0 and 3.0 mmol L-1, respectively. Soil minerals used varied in their efficiency in removing lead from its aqueous solutions. Zeolite came in first place. Removal rate of lead reached 180.69%, then bentonite 95.47%, phosphate rock 18.48%, and finally limestone 58%.
In this article four samples of HgBa2Ca2Cu2.4Ag0.6O8+δ were prepared and irradiated with different doses of gamma radiation 6, 8 and 10 Mrad. The effects of gamma irradiation on structure of HgBa2Ca2Cu2.4Ag0.6O8+δ samples were characterized using X-ray diffraction. It was concluded that there effect on structure by gamma irradiation. Scherrer, crystallization, and Williamson equations were applied based on the X-ray diffraction diagram and for all gamma doses, to calculate crystal size, strain, and degree of crystallinity. I
... Show More