It is often noted that disordered materials have different chemical properties to their more “ordered” cousins. Quantifying these effects in terms of thermodynamics is challenging in part because disordered materials can be difficult to characterize and are frequently relatively unstable. During the course of our experiments to understand the effects of disorder in catalysts for water oxidation we observed that many disordered manganese and cobalt oxide water oxidation catalysts directly oxidized peroxide in contrast to their more ordered analogues which catalyzed its disproportionation, that is, MnO2+2H+ +H2O2! Mn2+ +2H2O+O2(oxidation) versus H2O2!H2O+1=2 O2(disproportionation). By measuring the efficiency for one reaction over the other as a function of pH, we were able to quantify the relative stability of materials in two series of metal oxides and thereby quantify their relative thermodynamic stability, “by proxy”. We found that for the series of catalysts investigated the disorder made the materials stronger chemical oxidants and worse catalysts for the disproportionation of peroxide
Diesel engine oil was subjected to thermal oxidization (TO) for six periods of time (0 h, 24 h, 48 h, 72 h, 96 h, and 120 h) and was subsequently characterized by terahertz time domain spectroscopy (THz-TDS). The THz refractive index generally increased with oxidation time. The measurement method illustrated the potential of THz-TDS when a fixed setup with a single cuvette is used. A future miniaturized setup installed in an engine would be an example of a fixed setup. For the refractive index, there were highly significant differences among the oxidation times across most of the 0.3–1.7 THz range.
There is currently a pressing need to create an electro-analytical approach capable of detecting and monitoring genosensors in a highly sensitive, specific, and selective way. In this work, Functionalized Multiwall Carbon Nanotubes, Graphene, Polypyrrole, and gold nanoparticles nanocomposite (f-MWCNTs-GR-PPy-AuNP) were effectively deposited on the surface of the ITO electrode using a drop-casting process to modify it. The structural, morphological, and optical analysis of the modified ITO electrodes was carried out at room temperature using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) images, atomic force microscopy (AFM) and Fourier transform infrared (FTIR) spectra. Cyclic voltammetry (CV) and electrochemi
... Show MoreIn the lifetime process in some systems, most data cannot belong to one single population. In fact, it can represent several subpopulations. In such a case, the known distribution cannot be used to model data. Instead, a mixture of distribution is used to modulate the data and classify them into several subgroups. The mixture of Rayleigh distribution is best to be used with the lifetime process. This paper aims to infer model parameters by the expectation-maximization (EM) algorithm through the maximum likelihood function. The technique is applied to simulated data by following several scenarios. The accuracy of estimation has been examined by the average mean square error (AMSE) and the average classification success rate (ACSR). T
... Show MoreIn this research, the focus was placed on estimating the parameters of the Hypoexponential distribution function using the maximum likelihood method and genetic algorithm. More than one standard, including MSE, has been adopted for comparison by Using the simulation method
Dyspepsia is a significant public health issue that affects the entire world population. In this work, we formulate and analyze a deterministic model for the population dynamics of Gut bacteria in the presence of antibiotics and Probiotic supplements. All the possible equilibria and their local stability are obtained. The global stability around the positive equilibrium point is established. Numerical simulations back up our analytical findings and show the temporal dynamics of gut microorganisms.
Based on the needs of the scientific community, researchers tended to find new iterative schemes or develop previous iterative schemes that would help researchers reach the fixed point with fewer steps and with stability, will be define in this paper the multi_implicit four-step iterative (MIFSI) which is development to four-step implicit fixed point iterative, to develop the aforementioned iterative scheme, we will use a finite set of projective functions ,nonexpansive function and finite set from a new functions called generalized quasi like contractive which is an amalgamation of quasi contractive function and contractive like function , by the last function and a set of sequential organized steps, we will be able to prove the existen
... Show MoreIn this paper, we introduce new concepts that relates to soft space based on work that was previously presented by researchers in this regard. First we give the definition of Soft Contraction Operator and some examples. After that we introduce the concepts of soft Picard iteration and soft Mann iteration processes. We also give some examples to illustrate them.
Many concepts in normed spaces have been generalized in soft normed spaces. One of the important concepts is the concept of stability of soft iteration in soft normed spaces. We discuss this concept by giving some lemmas that are used to prove some theorems about stability of soft i
... Show More