Preferred Language
Articles
/
ijp-1148
Characterization of Magnetized-Plasma System Induced by Laser
...Show More Authors

  This study investigated the effect of applying an external magnetic field on the characteristics of laser-induced plasma, such as its parameters plasma, magnetization properties, emission line intensities, and plasma coefficients, for plasma induced from zinc oxide: aluminum composite (ZO:AL) at an atomic ratio of 0.3 %. Plasma properties include magnetization and emission line intensities. The excitation was done by a pulsed laser of Nd:YAG with 400 mJ energy at atmospheric pressure. Both the electron temperature and number density were determined with the help of the Stark effect principle and the Boltzmann-Plot method. There was a rise in the amount of (ne) and (Te) that was produced by applying a magnetic field and, on the other hand, using the 532 nm wavelength rather than the fundamental wavelength of a laser. The emission lines in the atmosphere's plasma have an appearance of Lorentzian shape. The 532 nm laser exhibited a decrease in both the Larmor radius and the confinement factor compared with the 1064 nm laser. By applying the magnetic field, the Laser Induced Breakdown Spectroscopy (LIBS) intensities increased by 1.44 times when compared to the emissions before applying the field. In addition, the spectral line intensities improved with the fundamental wavelength compared to the second harmonic frequency as a result of the increase in the extracted materials. This is due to the increase in the absorbance of the laser by the target, as some of these materials are excited, so they act as emission sources, which makes them more detectable.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Mar 30 2023
Journal Name
Iraqi Journal Of Science
Characterization of Laser induced cadmium plasma in air
...Show More Authors

In this paper, the fundamental harmonic of a Nd:YAG laser (Q-switched 1064nm wavelength, 1 Hz repetition rate and 9 ns pulse duration) has been used for the ablation of cadmium samples in air at atmospheric pressure and the generation of the cadmium plasma. The experimentally observed lines of cadmium plasma emission have been used to calculate the plasma parameters such as (electron temperature (TReR), electron density (nReR), Debye length (λRDR) and plasma frequency (ωRpR)). Line pair ratio of neutral species have been used for the electron temperature and electron density measurements. Plasma parameters were studied as a functions of laser pulse energy.

View Publication Preview PDF
Publication Date
Thu May 01 2014
Journal Name
Engineering And Technology Journal
Relativistic Self-Focusing of Intense Laser Beam in Magnetized Plasma
...Show More Authors

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Feb 04 2019
Journal Name
Iraqi Journal Of Physics
Estimation of electron temperature for SiO2 plasma induced by laser
...Show More Authors

In this work; Silicon dioxide (SiO2) were fabricated by pulsed
laser ablation (PLA). The electron temperature was calculated by
reading the data of I-V curve of Langmuir probe which was
employed as a diagnostic technique for measuring plasma properties.
Pulsed Nd:YA Glaser was used for measuring the electron
temperature of SiO2 plasma plume under vacuum environment with
varying both pressure and axial distance from the target surface. The
electron temperature has been measured experimentally and the
effects of each of pressure and Langmuir probe distance from the
target were studied. An inverse relationship between electron
temperature and both pressure and axial distance was observed.

View Publication Preview PDF
Crossref
Publication Date
Fri Dec 30 2022
Journal Name
Iraqi Journal Of Science
Characteristics of Calcium Plasma Parameters by Laser-Induced Breakdown Spectroscopy Technique
...Show More Authors

      In this work, the effect of laser energy on the properties of a calcium plasma generated by a Q-switched Nd: YAG laser at the fundamental wavelength was studied using spectroscopy. The Boltzmann plot and Stark broadening method were used to measure the main plasma parameters (electron temperature and electron density). The electron temperature ranged ( 0.169 -0.172 ) eV, the electron density ranged ( 2.10 – 2.63 ) for laser energy range of ( 400 – 700) mJ. Other basic plasma properties were also measured, including the Debye length, the number of particles in the Debye sphere, and the plasma frequency. Laser energy affects all plasma parameters, according to our results.

View Publication Preview PDF
Scopus Crossref
Publication Date
Fri Oct 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Spectroscopic Diagnostic of Laser-Induced Zn Plasma
...Show More Authors

The sample's physical characteristics and laser parameters impact the generation and characterization of Laser-Induced Plasma (LIP), which is a relevant phenomenon in many applications. We investigated the effect of laser energy on laser-induced Zn plasma characterization in this study. A Zn plasma with a repeating frequency of 6 Hz, a first wavelength of 1064 nm, a pulse duration of 10 ns, and a laser energy range of 300 mJ to 500 mJ was created using a Q-switched ND: YAG laser. The basic plasma properties, such as electron temperature and density, were estimated using optical emission spectroscopy (OES). The electrons' temperature was measured by the Boltzmann plot method, and the value of the electrons' temperature ranged from 1.6 eV

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Feb 01 2022
Journal Name
Iraqi Journal Of Science
Some physical properties of SiO2 laser induced plasma
...Show More Authors

In this work; Silicon dioxide (SiO2) plasma plume was prepared by laser induced plasma (LIP). The electron number density, plasma frequency and Debye length were calculated by reading the data of I-V curve of Langmuir probe which was used as a diagnostic method of measuring plasma properties. Pulsed Nd:YAG laser was used for measuring the electron number density of SiO2 plasma plume under vacuum environment with varying both vacuum pressure and axial distance from the target surface. Some physical properties of the plasma generated such as electron density, plasma frequency and Debye length have been measured experimentally and the effects of vacuum pressure and Langmuir probe distance from the target were studied on those variables. An

... Show More
View Publication Preview PDF
Publication Date
Sat Apr 30 2022
Journal Name
Iraqi Journal Of Science
Measurements and Calculations of parametrs of Zinc Oxide Plasma Produced by Laser induced Breakdown Spectroscopy
...Show More Authors

          In this work, the optical emission characteristics of the ZnO plasma were presented. The plasma parameters: electron temperature (Te), electron density( ne), plasma frequency (fp) and Debye length (λD) were  studied with  a spectrometer that collects the spectrum ZnO plasma in air produced by Nd:YAG laser,(λ=1064 nm) at ratio X=0.5 in the range of energy of (700-1000 mJ), duration (10 ns). The Boltzmann plot methodwas employed to calculate the electron temperature (Te), while the Stark broadening  was used to determine the electron density (ne), Debye duration (λD), and plasma frequency (fp).  Te, ne, and fp

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Sat Oct 01 2022
Journal Name
International Journal Of Nanoscience
Preparation and Physical Properties of Mg-Zn Nano-crystal by Laser-induced Plasma
...Show More Authors

To learn how the manner of preparation influences film development, this study examined film expansion under a variety of deposition settings. To learn about the membrane’s properties and to ascertain the optimal pretreatment conditions, which are represented by ambient temperature and pressure, Laser pressure of 2.5[Formula: see text]m bar, the laser energy density of 500[Formula: see text]mJ, distortion ratio ([Formula: see text]) as a function of laser pulse count, all achieved with the double-frequency Nd: YAG laser operating in quality-factor mode at 1064[Formula: see text]nm. MgxZn[Formula: see text] films of thickness [Formula: see text][Formula: see text]nm were deposited on glass substrates at pulse

... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Mon Feb 04 2019
Journal Name
Iraqi Journal Of Physics
Characterization of silver polyaniline nanocomposite thin films prepared by microwave induced plasma
...Show More Authors

Polyaniline (PANI) and Ag/PANI nanocomposite thin films have prepared by microwave induced plasma. The Ag powder of average particle size of 50 nm, were used to prepare Ag/PANI nanocomposite thin films. The Ag/PANI nanocomposite thin films prepared by polymerization in plasma and characterized by UV-VIS, FTIR, AFM and SEM to study the effect of silver nanoparticles on the optical properties, morphology and structure of the thin films. The optical properties studies showed that the energy band gap of the Ag/PANI (5%wt silver) decreased from 3.6 to 3.2 eV, where the substrate location varied from 4.4 to 3.4 cm from the axis of the cylindrical plasma chamber. Also the optical energy gap decreased systematically from 3.3 to 3 eV with increas

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu May 11 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Charge Transport in Magnetized Plasma
...Show More Authors

     The plasma source can restrict the motion of charges that are localizing in the non equilibrium distribution of charge energy and reducing the electrons transport across magnetic field . The electrons & ions motion are controlled by ambipolar electric field and charge–atom collision . the source density for a given electron temperature and a given ion are considered to evaluate the diffusion coefficient . the ambipolar diffusion coefficient and the cross field diffusion coefficient for charge transfer are calculated through magnetized plasma in a uniform magnetic  field , and an approximation ambipolar diffusion coefficient is evaluated. The result, showes how the diffusion process is gradually im

... Show More
View Publication Preview PDF