Preferred Language
Articles
/
ijp-1148
Characterization of Magnetized-Plasma System Induced by Laser
...Show More Authors

  This study investigated the effect of applying an external magnetic field on the characteristics of laser-induced plasma, such as its parameters plasma, magnetization properties, emission line intensities, and plasma coefficients, for plasma induced from zinc oxide: aluminum composite (ZO:AL) at an atomic ratio of 0.3 %. Plasma properties include magnetization and emission line intensities. The excitation was done by a pulsed laser of Nd:YAG with 400 mJ energy at atmospheric pressure. Both the electron temperature and number density were determined with the help of the Stark effect principle and the Boltzmann-Plot method. There was a rise in the amount of (ne) and (Te) that was produced by applying a magnetic field and, on the other hand, using the 532 nm wavelength rather than the fundamental wavelength of a laser. The emission lines in the atmosphere's plasma have an appearance of Lorentzian shape. The 532 nm laser exhibited a decrease in both the Larmor radius and the confinement factor compared with the 1064 nm laser. By applying the magnetic field, the Laser Induced Breakdown Spectroscopy (LIBS) intensities increased by 1.44 times when compared to the emissions before applying the field. In addition, the spectral line intensities improved with the fundamental wavelength compared to the second harmonic frequency as a result of the increase in the extracted materials. This is due to the increase in the absorbance of the laser by the target, as some of these materials are excited, so they act as emission sources, which makes them more detectable.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Feb 04 2019
Journal Name
Iraqi Journal Of Physics
Estimation of electron temperature for SiO2 plasma induced by laser
...Show More Authors

In this work; Silicon dioxide (SiO2) were fabricated by pulsed
laser ablation (PLA). The electron temperature was calculated by
reading the data of I-V curve of Langmuir probe which was
employed as a diagnostic technique for measuring plasma properties.
Pulsed Nd:YA Glaser was used for measuring the electron
temperature of SiO2 plasma plume under vacuum environment with
varying both pressure and axial distance from the target surface. The
electron temperature has been measured experimentally and the
effects of each of pressure and Langmuir probe distance from the
target were studied. An inverse relationship between electron
temperature and both pressure and axial distance was observed.

View Publication Preview PDF
Crossref
Publication Date
Thu May 01 2014
Journal Name
Engineering And Technology Journal
Relativistic Self-Focusing of Intense Laser Beam in Magnetized Plasma
...Show More Authors

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Oct 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Spectroscopic Diagnostic of Laser-Induced Zn Plasma
...Show More Authors

The sample's physical characteristics and laser parameters impact the generation and characterization of Laser-Induced Plasma (LIP), which is a relevant phenomenon in many applications. We investigated the effect of laser energy on laser-induced Zn plasma characterization in this study. A Zn plasma with a repeating frequency of 6 Hz, a first wavelength of 1064 nm, a pulse duration of 10 ns, and a laser energy range of 300 mJ to 500 mJ was created using a Q-switched ND: YAG laser. The basic plasma properties, such as electron temperature and density, were estimated using optical emission spectroscopy (OES). The electrons' temperature was measured by the Boltzmann plot method, and the value of the electrons' temperature ranged from 1.6 eV

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Oct 01 2022
Journal Name
International Journal Of Nanoscience
Preparation and Physical Properties of Mg-Zn Nano-crystal by Laser-induced Plasma
...Show More Authors

To learn how the manner of preparation influences film development, this study examined film expansion under a variety of deposition settings. To learn about the membrane’s properties and to ascertain the optimal pretreatment conditions, which are represented by ambient temperature and pressure, Laser pressure of 2.5[Formula: see text]m bar, the laser energy density of 500[Formula: see text]mJ, distortion ratio ([Formula: see text]) as a function of laser pulse count, all achieved with the double-frequency Nd: YAG laser operating in quality-factor mode at 1064[Formula: see text]nm. MgxZn[Formula: see text] films of thickness [Formula: see text][Formula: see text]nm were deposited on glass substrates at pulse

... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Mon Feb 04 2019
Journal Name
Iraqi Journal Of Physics
Characterization of silver polyaniline nanocomposite thin films prepared by microwave induced plasma
...Show More Authors

Polyaniline (PANI) and Ag/PANI nanocomposite thin films have prepared by microwave induced plasma. The Ag powder of average particle size of 50 nm, were used to prepare Ag/PANI nanocomposite thin films. The Ag/PANI nanocomposite thin films prepared by polymerization in plasma and characterized by UV-VIS, FTIR, AFM and SEM to study the effect of silver nanoparticles on the optical properties, morphology and structure of the thin films. The optical properties studies showed that the energy band gap of the Ag/PANI (5%wt silver) decreased from 3.6 to 3.2 eV, where the substrate location varied from 4.4 to 3.4 cm from the axis of the cylindrical plasma chamber. Also the optical energy gap decreased systematically from 3.3 to 3 eV with increas

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu May 11 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Charge Transport in Magnetized Plasma
...Show More Authors

     The plasma source can restrict the motion of charges that are localizing in the non equilibrium distribution of charge energy and reducing the electrons transport across magnetic field . The electrons & ions motion are controlled by ambipolar electric field and charge–atom collision . the source density for a given electron temperature and a given ion are considered to evaluate the diffusion coefficient . the ambipolar diffusion coefficient and the cross field diffusion coefficient for charge transfer are calculated through magnetized plasma in a uniform magnetic  field , and an approximation ambipolar diffusion coefficient is evaluated. The result, showes how the diffusion process is gradually im

... Show More
View Publication Preview PDF
Publication Date
Tue Dec 01 2020
Journal Name
Minar International Journal Of Applied Sciences And Technology
Electron density spectroscopic measurement in Al laser induced plasma
...Show More Authors

Plasma generated by a 1064 nm pulsed Nd: YAG laser with pulse duration of 10 ns concentrated onto an Al solid target under vacuum pressure was examined spectroscopically. The temperature and electron density specifying the plasma were measured by time-resolved spectroscopy of neutral atom and ion line emissions in the time period range of 300–2000 ns. An echelle spectrograph is utilized to appear the plasma emission lines. The temperature was obtained using the spectral line comparison method and the electron density was calculated using the Stark Broadening (SB) method. The electron density was characterized as a function of laser pulse energy. The time range where the plasma is optically thin and is also in local thermodynamic equilibri

... Show More
Publication Date
Wed Jan 01 2020
Journal Name
Technologies And Materials For Renewable Energy, Environment And Sustainability: Tmrees20
Synthesis of zinc nanoparticles by laser induced plasma and its effects on levels of thyroid hormones
...Show More Authors

In the present study, the effect of Zinc nanoparticles on levels of (T3 , T4 and TSH) hormones was investigated. Zinc nanoparticles were synthesized by Laser induced plasma.The Nd: YAG Nd: YAG laser with a wavelength of 1064 nm was used to generate nanomaterials of the elements (zinc) upon collision with target atoms. Plasma generated by different laser intensity is generated. After confirming the preparation of zinc nanoparticles, XRD, AFM was examined, and the effect of these substances on the thyroid gland (T3, T4, TSH) was observed for two doses of each component (1 ml / kg, 4 ml / kg) after conducting a cytotoxicity examination of the lymphocytes of the rats extracted from Rat spleen was 1.8% less toxic to zinc, and as noted The

... Show More
View Publication
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Tue Jun 01 2021
Journal Name
Iraqi Journal Of Physics
Influence of Laser Energy on the Structural and Optical Properties of (CdO):(CoO) Thin Films Produced by Laser-Induced Plasma (LIP)
...Show More Authors

In this work, (CdO)1-x (CoO)x thin films were prepared on glass slides by laser-induced plasma using Nd:YAG laser with (λ=1064 nm) and duration (9 ns) at different laser energies (200-500 mJ) with ratio (x=0.5), The influence of laser energy on structural and optical properties has been studied. XRD patterns show the films have a structure of polycrystalline wurtzite. As for AFM tests results for the topography of the surface of the film, where the results showed that the grain size and the average roughness increase with increasing laser energy. The optical properties of all films were also studied and the results showed that the absorption coefficient for within the wavelength range (280-1100 nm), The value of the optical power gap fo

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Fri Oct 01 2010
Journal Name
Iraqi Journal Of Physics
Correlation of Paschen parameters in magnetized argon plasma
...Show More Authors

A number of glow discharge experiments has been carried out in a relatively large-volume metallic vacuum chamber containing argon at low pressure and immersed in an inhomogeneous magnetic field generated by a solenoidal coil capable of delivering 2100G. Two Paschen curves demonstrating the dependence of the discharge voltage on sparking parameter Pd and magnetic field strength B were deduced. A graphical correlation showing the behaviour of the voltage difference from the two curves on the ratio B/Pd was constructed. Investigations showed a reduction in the nominal impedance of the discharge device of nearly 20% when B reaches a value of 525G. Plasma confinement regions were found around the internal surface of the chamber at the entranc

... Show More
View Publication Preview PDF