The DC electrical conductivity properties of Ge60Se40-xTex alloy with x = 0, 5, 10, 15 and 20). The samples were formed in the form of discs with the thickness of 0.25–0.30 cm and the diameter of 1.5 cm. Samples were pressed under a pressure of 6 tons per cm2 , using a ton hydraulic press. They were prepared after being pressed using a ton hydraulic press using a hydraulic press. Melting point technology use to preper the samples. Continuous electrical conductivity properties were recorded from room temperature to 475 K. Experimental data indicates that glass containing 15% Te has the highest electrical conductivity allowing maximum current through the sample compared to Lu with other samples. Therefore, it is found that the DC conductivity increases with increasing Te concentration. The electrical conductivity properties show non-ohmic behavior due to the effects of temperature on the crystal structure of the samples, which indicates that the samples remain semi-conductive after partial replacement. Three conduction mechanisms are also observed for each sample at high, medium, and low temperatures. The Fermi level local and extended state densities and conductance parameters were calculated, and all were found to change with the change of Te concentration.
A simple and novel membraneless paper-based microfluidic fuel cell was presented in this study. The occurrence of laminar flow was employed to ensure no mixing of the fuel and oxidant fluids along the bath of reaction. The acidic wastewater was used as a fuel. It was an air-breathing cell, so air and tab water were used as oxidants. Both the fuel and tab water flowed continuously under gravity. Whatman filter paper was used for preparation of the fuel cell channel and two carbon fibre electrodes were used and firmed on the edges of the cell. The performance of the cell was examined over three consecutive days. The results indicated that the present cell has the potential to generate electric power, but an extensive study is required to harv
... Show MoreThe determination of captopril (CAP) using a new continuous flow injection analysis (CFIA) method was given in this work CAP in its pure state and some of its pharmaceutical preparations. The technique can be described as simple, fast, sensitive, easy to operate, and low-cost. The CAP reacted with ammonium ceric(IV) sulfate (ACS)2(NH4 )2SO4Ce(SO4)2. 3 H2O in an acidic medium and the reaction led to the formation of a white, slightly yellowish precipitate. The formed precipitate was studied using Ayah 6S×1-ST-2D Solar cell-CFI Analyzer, a through the reflection of accident light on the surfaces of the precipitate particles at (0-1800), expressed as the response
... Show MoreThis study aimed at identifying the counseling needs for classroom teachers specialization in
Jerash university. The sample of the study consisted (112) students. To achieve this goal a
scale with (39) items was built by the researcher, this scale has four domains they are as
follows; family, social, psychological and academic domain. The results of this study showed
that counseling needs obtain the heighest average. As well as, the results of the study revealed
that there were statistical differences in favor of gender and teaching year variable. Finally the
study stated a list of recommendations.
In the present investigation two different types of fiber reinforced polymer composites were prepared by hand lay-up method using three different parameters (curing temperature, pressing load and fiber volume fraction). These composites were prepared from the polyester resin as the matrix material reinforced with glass fibers as first group of samples and mat Kevlar fibers as the second group, both with different volume fractions (4%, 8%, and 12%) of fibers. They were then tested by tensile strength and impact strength. The main objective in this study is to use Taguchi method for predicting the better parameters that give the better tensile and impact strength to the composites, and then preparing composites at
... Show MoreZnO nanostructures were synthesized by hydrothermal method at different temperatures and growth times. The effect of increasing the temperature on structural and optical properties of ZnO were analyzed and discussed. The prepared ZnO nanostructures were characterized by X-ray diffraction (XRD), UV–Vis. absorption spectroscopy (UV–Vis.), Photoluminescence (PL), and scanning electron microscopy (SEM). In this work, hexagonal crystal structure prepared ZnO nanostructures was observed using X-ray diffraction (XRD) and the average crystallite size equal 14.7 and 23.8 nm for samples synthesized at growth time 7 and 8 hours respectively. A nanotubes-shaped surface morphology was found using scanning electron microscopy (SEM). The optic
... Show MoreZinc oxide (ZnO) nanoparticles were synthesized using a modified hydrothermal approach at different reaction temperatures and growth times. Moreover, a thorough morphological, structural and optical investigation was demonstrated using scanning electron microscopy (SEM), x-ray diffraction (XRD), ultra-violate visible light spectroscopy (UV-Vis.), and photoluminescence (PL) techniques. Notably, SEM analysis revealed the occurrence of nanorods-shaped surface morphology with a wide range of length and diameter. Meanwhile, a hexagonal crystal structure of the ZnO nanoparticles was perceived using XRD analysis and crystallite size ranging from 14.7 to 23.8 nm at 7 and 8 ℎ𝑟𝑠., respectively. The prepared ZnO samples showed good abso
... Show MoreThe extraction of Cupressus sempervirens L. or cypress essential oil was studied in this paper. This cypress oil was extracted by using the hydro-distillation method, using a clevenger apparatus. Cupressus sempervirens L. leaves were collected from Hit city in Al-Anbar province – Iraq. The influences of three important parameters on the process of oil extraction; water which used as a solvent to the solid ratio (5:1 and 14:1 (ml solvent/g plant), temperature (30 to 100 °C) and processing time, were examined to obtain the best processing conditions to achieve the maximum yield of the essential oil. Also, the mathematical model was described to calculate the mass transfer coefficient. Therefore, the best conditions, that were obtained in
... Show MoreAbstract: Colloidal gold nanoparticles (ringworm Palm or in the form of paper willow) have been prepared from HAuCl4 containing aqueous solution by hot chemical reduction method. The colloidal gold nanoparticles were characterized by SEM, EDX, and UV-VIS absorption spectroscopy. It was found that the variation of reduction time from boiling point affects the size of the nanoparticles and also in chemical reduction approach the size of nanoparticles can be controlled by varying the amount of variation the volume of reductant material with respect to the volume of HAuCL4.
It is known that energy subiect has ocuppied a lot of scientests minds about
how to treat the traditional energy and the renewing energy . we know that
most traditional energy coal , oil , Natural gas, neuclear fuel , are limited
guantiy and alsow subjected to be ended .Statics studies refer to reserve
of oil in world will exhausted btween ( 2075- 2100) and alsow cosl too .
While neuclear fuerl which the world seek today through explod the uranium
atom ( 233) the therum atom (239) and neuclear mxied through ruemlear
mixing , These energy have effect on environment and humanity speciaty if
they are used in militery purposes .
For all theses scientests srarch for resources of renewing enery through
researches
Cr2O3 thin films have been prepared by spray pyrolysis on a glass substrate. Absorbance and transmittance spectra were recorded in the wavelength range (300-900) nm before and after annealing. The effects of annealing temperature on absorption coefficient, refractive index, extinction coefficient, real and imaginary parts of dielectric constant and optical conductivity were expected. It was found that all these parameters increase as the annealing temperature increased to 550°C.