Sewer sediment deposition is an important aspect as it relates to several operational and environmental problems. It concerns municipalities as it affects the sewer system and contributes to sewer failure which has a catastrophic effect if happened in trunks or interceptors. Sewer rehabilitation is a costly process and complex in terms of choosing the method of rehabilitation and individual sewers to be rehabilitated. For such a complex process, inspection techniques assist in the decision-making process; though, it may add to the total expenditure of the project as it requires special tools and trained personnel. For developing countries, Inspection could prohibit the rehabilitation proceeds. In this study, the researchers proposed an alternative method for sewer sediment accumulation calculation using predictive models harnessing multiple linear regression model (MLRM) and artificial neural network (ANN). AL-Thawra trunk sewer in Baghdad city is selected as a case study area; data from a survey done on this trunk is used in the modeling process. Results showed that MLRM is acceptable, with an adjusted coefficient of determination (adj. R2) in order of 89.55%. ANN model found to be practical with R2 of 82.3% and fit the data better throughout its range. Sensitivity analysis showed that the flow is the most influential parameter on the depth of sediment deposition.
In this research، a comparison has been made between the robust estimators of (M) for the Cubic Smoothing Splines technique، to avoid the problem of abnormality in data or contamination of error، and the traditional estimation method of Cubic Smoothing Splines technique by using two criteria of differentiation which are (MADE، WASE) for different sample sizes and disparity levels to estimate the chronologically different coefficients functions for the balanced longitudinal data which are characterized by observations obtained through (n) from the independent subjects، each one of them is measured repeatedly by group of specific time points (m)،since the frequent measurements within the subjects are almost connected an
... Show MoreThis study aimed at evaluating the torsional capacity of reinforced concrete (RC) beams externally wrapped with fiber reinforced polymer (FRP) materials. An analytical model was described and used as a new computational procedure based on the softened truss model (STM) to predict the torsional behavior of RC beams strengthened with FRP. The proposed analytical model was validated with the existing experimental data for rectangular sections strengthened with FRP materials and considering torque-twist relationship and crack pattern at failure. The confined concrete behavior, in the case of FRP wrapping, was considered in the constitutive laws of concrete in the model. Then, an efficient algorithm was developed in MATLAB environment t
... Show MoreThe water supply network inside the building is of high importance due to direct contact with the user that must be optimally designed to meet the water needs of users. This work aims to review previous research and scientific theories that deal with the design of water networks inside buildings, from calculating the amount of consumption and the optimal distribution of the network, as well as ways to rationalize the use of water by the consumer. The process of pumping domestic water starts from water treatment plants to be fed to the public distribution networks, then reaching a distribution network inside the building till it is provided to the user. The design of the water supply network inside the building is
... Show More