Deep eutectic solvents (DESs) are considered as relativity green solvents in comparison with ionic liquids and organic solvents. DESs are used in nanotechnology applications due to their unique physiochemical properties, efficient dispersants and they can be easily prepared in high purity at low cost. Other advantages include their nontoxicity, no reactivity with water and being biodegradable. DESs have recently attracted much attention in various fields, especially in the field of nanotechnology in controlling the size, surface chemistry and morphology of the nanomaterials and in the processing of advanced functional nanomaterials. As a result, various studies have been undertaken to investigate the physicochemical characteristics of the combination of DESs and nanomaterials. Recently, DESs are widely used as functionalization agents for different nanomaterials. Hence, this chapter will be summarizing the recent developments of DESs to improve the surface chemistry of nanomaterials and their possible applications.
Nonlinear diffraction patterns can be obtained by focusing a laser beam through a thin slice of the material. Here, we investigated experimentally the formation of the far field nonlinear diffraction patterns of cw laser beam at 532 nm passing through a quartz cuvette containing multi-wall carbon nanotubes (MWCNT's) suspended in acetone and in DI water at concentrations of 0.030.wt.%, 0.045 wt.%, 0.060 wt.%, and 0.075 wt.%. Our results show that increasing the concentration of both types of suspensions (MWCNTs in acetone and MWCNTs DI water) led to increase in the number of pattern rings which indicates an increase in their nonlinear refractive indices. Moreover, MWCNTs DI water suspension at a concentration of 0.075 wt. % was more effic
... Show MoreWe report here an innovative feature of green nanotechnology-focused work showing that mangiferin—a glucose functionalized xanthonoid, found in abundance in mango peels—serves dual roles of chemical reduction and in situ encapsulation, to produce gold nanoparticles with optimum in vivo stability and tumor specific characteristics. The interaction of mangiferin with a Au-198 gold precursor affords MGF-198AuNPs as the beta emissions of Au-198 provide unique advantages for tumor therapy while gamma rays are used for the quantitative estimation of gold within the tumors and various organs. The laminin receptor specificity of mangiferin affords specific accumulation of therapeutic payloads of this new therapeutic agent within prostate tumors
... Show MoreThe adsorption process of 5-Fluorouracil (5FU) drugs on Aluminum nitride nanotubes surface (AlNNTs) have been evaluated through density functional theory (DFT). The DFT results show that the interaction of AlNNTs with the F atoms of 5FU drugs is strong due to the fact that the amount of adsorption energy was about − 29.65 kcal.mol−1. Conversely, the interaction of the 5FU through O atoms with the AlNNTs was weaker due to the lower value of adsorption energy. Also, based on the values of Gibbs free energy, the 5FU adsorption on the surfaces of AlNNTs was spontaneous. In addition, based on natural bond orbital (NBO) analysis, the direction of charge transfer was from fluorine’s σ orbitals of the drug to nitrogen’s and aluminum’s n*
... Show MoreFatty Acid Methyl Ester (FAME) produced from biomass offers several advantages such as renewability and sustainability. The typical production process of FAME is accompanied by various impurities such as alcohol, soap, glycerol, and the spent catalyst. Therefore, the most challenging part of the FAME production is the purification process. In this work, a novel application of bulk liquid membrane (BLM) developed from conventional solvent extraction methods was investigated for the removal of glycerol from FAME. The extraction and stripping processes are combined into a single system, allowing for simultaneous solvent recovery whereby low-cost quaternary ammonium salt-glycerol-based deep eutectic solvent (DES) is used as the membrane phase.
... Show MoreThis study concerns the role of activated carbon (AC) from palm raceme as a support material for the enhancement of lipase-catalyzed reactions in an aqueous solution, with deep eutectic solvent (DES) as a co-solvent. The effects of carbonization temperature, impregnation ratio, and carbonization time on lipase activity were studied. The activities of Amano lipase from Burkholderia cepacia (AML) and lipase from the porcine pancreas (PPL) were used to investigate the optimum conditions for AC preparation. The results showed that AC has more interaction with PPL and effectively provides greater enzymatic activity compared with AML. The optimum treatment conditions of AC samples that yield the highest enzymatic activity were 0.5 (NaOH (
... Show MoreIn this research, hand lay- up technique is used to prepare samples from epoxy resin reinforced with multi- walled carbon nanotubes in different weight fractions (0, 2, 3, 4, 5) wt%. The immersion effect by sodium hydroxide solution (NaOH) at normality (0.3N) for a period of (15 days) on the thermal conductivity of nanocomposites was studied, and compared to natural condition (before immersion). The thermal conductivity of epoxy nanocomposites specimens were carried out using Lee’s disk method. The experimental results showed that thermal conductivity increased with increase weight fraction before and after immersion for all specimens, while the immersion effect leads to decrease thermal conductive values compared to thermal conductivi
... Show More