Preferred Language
Articles
/
qhfiRJIBVTCNdQwCRamz
Variable Pulsed Irrigation Algorithm (VPIA) to Reduce Runoff Losses under a Low-Pressure Lateral Move Irrigation Machine
...Show More Authors

Due to restrictions and limitations on agricultural water worldwide, one of the most effective ways to conserve water in this sector is to reduce the water losses and improve irrigation uniformity. Nowadays, the low-pressure sprinkler has been widely used to replace the high-pressure impact sprinklers in lateral move sprinkler irrigation systems due to its low operating cost and high efficiency. However, the hazard of surface runoff represents the biggest obstacle for low-pressure sprinkler systems. Most researchers have used the pulsing technique to apply variable-rate irrigation to match the crop water needs within a normal application rate that does not produce runoff. This research introduces a variable pulsed irrigation algorithm (VPIA) based on an ON–OFF pulsing technique to conserve irrigation water through (1) decreasing the runoff losses by considering the soil infiltration rate, surface storage capacity, and sprinkler wetting diameter; and (2) ensuring a high level of water distribution uniformity in the direction of machine movement. From a wide range of pulse numbers and widths tested applying a certain water depth to a sandy loam soil, the best solution that gives the lowest runoff and highest uniformity while delivering an acceptable water depth was selected. A MATLAB code was written to simulate the soil infiltration rate, the sprinkler application rate, and to apply the proposed algorithm. The simulation results showed a runoff reduction of at least 90.7% with a high level of distribution uniformity in the direction of movement while delivering the highest possible irrigation depth using the lowest number of pulses.

Scopus Clarivate Crossref
View Publication
Publication Date
Sun Dec 30 2012
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Hydrodynamic Pressure Gradient Correlation of Some Iraqi Oil Wells
...Show More Authors

Empirical equation has been presented to predict the optimum hydrodynamic
pressure gradient with optimum mud flow rate (one equation) of five Iraqi oil wells
to obtain the optimum carrying capacity of the drilling fluid ( optimum transport
cuttings from the hole to the surface through the annulus).
This equation is a function of mud flow rate, mud density and penetration
rate without using any charts or graphs.
The correlation coefficient accuracy is more than 0.9999.

View Publication Preview PDF
Publication Date
Sun Jan 01 2023
Journal Name
Aip Conference Proceedings
The efficiency of cluster analysis to analyzing medical image of Covid-19 patient by using K-means algorithm
...Show More Authors

View Publication
Scopus (1)
Scopus Crossref
Publication Date
Mon May 27 2019
Journal Name
Al-academy
The Performance Variable of the Actor's Techniques in Postmodern Theater Shows: وئام وافي علي
...Show More Authors

The postmodern ideas and concepts have produced social, political and economic variables that have been affected by wars, crises, the role of globalization and the information revolution. They have created many variables in concepts and great variables in technological, artistic and cultural innovations. All these changes have contributed to changing the form of the theatrical show aesthetically and intellectually, which cast a shadow over the nature of the actor's performance who has become more demanding to change his performance and to find the mechanisms and new nature of work governing him corresponding to those variables and this prompted the researcher to adopt the subject (the performance variable of the actor's techniques in pos

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Apr 30 2025
Journal Name
Iraqi Journal Of Science
Calculating the Variation of the Universal Parameter (Variable) Using Kepler's Equation for Different Orbits
...Show More Authors

Stumpff functions are an infinite series that depends on the value of z. This value results from multiplying the reciprocal semi-major axis with a universal anomaly. The purpose from those functions is to calculate the variation of the universal parameter (variable) using Kepler's equation for different orbits. In this paper, each range for the reciprocal of the semi-major axis, universal anomaly, and z is calculated in order to study the behavior of Stumpff functions C(z) and S(z). The results showed that when z grew, Stumpff functions for hyperbola, parabola, and elliptical orbits were also growing. They intersected and had a tendency towards zero for both hyperbola and parabola orbits, but for elliptical orbits, Stumpff functions

... Show More
Preview PDF
Publication Date
Fri Feb 28 2025
Journal Name
Energies
Synergizing Machine Learning and Physical Models for Enhanced Gas Production Forecasting: A Comparative Study of Short- and Long-Term Feasibility
...Show More Authors

Advanced strategies for production forecasting, operational optimization, and decision-making enhancement have been employed through reservoir management and machine learning (ML) techniques. A hybrid model is established to predict future gas output in a gas reservoir through historical production data, including reservoir pressure, cumulative gas production, and cumulative water production for 67 months. The procedure starts with data preprocessing and applies seasonal exponential smoothing (SES) to capture seasonality and trends in production data, while an Artificial Neural Network (ANN) captures complicated spatiotemporal connections. The history replication in the models is quantified for accuracy through metric keys such as m

... Show More
View Publication Preview PDF
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Tue Jul 09 2024
Journal Name
Diagnostics
A Novel Hybrid Machine Learning-Based System Using Deep Learning Techniques and Meta-Heuristic Algorithms for Various Medical Datatypes Classification
...Show More Authors

Medicine is one of the fields where the advancement of computer science is making significant progress. Some diseases require an immediate diagnosis in order to improve patient outcomes. The usage of computers in medicine improves precision and accelerates data processing and diagnosis. In order to categorize biological images, hybrid machine learning, a combination of various deep learning approaches, was utilized, and a meta-heuristic algorithm was provided in this research. In addition, two different medical datasets were introduced, one covering the magnetic resonance imaging (MRI) of brain tumors and the other dealing with chest X-rays (CXRs) of COVID-19. These datasets were introduced to the combination network that contained deep lea

... Show More
View Publication
Scopus (3)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Sun Jun 05 2022
Journal Name
Network
A Computationally Efficient Gradient Algorithm for Downlink Training Sequence Optimization in FDD Massive MIMO Systems
...Show More Authors

Future wireless networks will require advance physical-layer techniques to meet the requirements of Internet of Everything (IoE) applications and massive communication systems. To this end, a massive MIMO (m-MIMO) system is to date considered one of the key technologies for future wireless networks. This is due to the capability of m-MIMO to bring a significant improvement in the spectral efficiency and energy efficiency. However, designing an efficient downlink (DL) training sequence for fast channel state information (CSI) estimation, i.e., with limited coherence time, in a frequency division duplex (FDD) m-MIMO system when users exhibit different correlation patterns, i.e., span distinct channel covariance matrices, is to date ve

... Show More
View Publication
Scopus (3)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Thu Jun 26 2014
Journal Name
Engineering Optimization
A new modified differential evolution algorithm scheme-based linear frequency modulation radar signal de-noising
...Show More Authors

The main intention of this study was to investigate the development of a new optimization technique based on the differential evolution (DE) algorithm, for the purpose of linear frequency modulation radar signal de-noising. As the standard DE algorithm is a fixed length optimizer, it is not suitable for solving signal de-noising problems that call for variability. A modified crossover scheme called rand-length crossover was designed to fit the proposed variable-length DE, and the new DE algorithm is referred to as the random variable-length crossover differential evolution (rvlx-DE) algorithm. The measurement results demonstrate a highly efficient capability for target detection in terms of frequency response and peak forming that was isola

... Show More
View Publication
Scopus (7)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Sat Feb 11 2023
Journal Name
Applied Sciences
A Preliminary Study and Implementing Algorithm Using Finite State Automaton for Remote Identification of Drones
...Show More Authors

Electronic remote identification (ER-ID) is a new radio frequency (RF) technology that is initiated by the Federal Aviation Authorities (FAA). For security reasons, traffic control, and so on, ER-ID has been applied for drones by the FAA to enable them to transmit their unique identification and location so that unauthorized drones can be identified. The current limitation of the existing ER-ID algorithms is that the application is limited to the Wi-Fi and Bluetooth wireless controllers, which results in a maximum range of 10–20 m for Bluetooth and 50–100 m for Wi-Fi. In this study, a mathematical computing technique based on finite state automaton (FSA) is introduced to expand the range of the ER-ID RF system and reduce the ene

... Show More
View Publication
Scopus (5)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Sat Dec 01 2018
Journal Name
Applied Soft Computing
A new evolutionary algorithm with locally assisted heuristic for complex detection in protein interaction networks
...Show More Authors

View Publication
Scopus (14)
Crossref (8)
Scopus Clarivate Crossref