Due to restrictions and limitations on agricultural water worldwide, one of the most effective ways to conserve water in this sector is to reduce the water losses and improve irrigation uniformity. Nowadays, the low-pressure sprinkler has been widely used to replace the high-pressure impact sprinklers in lateral move sprinkler irrigation systems due to its low operating cost and high efficiency. However, the hazard of surface runoff represents the biggest obstacle for low-pressure sprinkler systems. Most researchers have used the pulsing technique to apply variable-rate irrigation to match the crop water needs within a normal application rate that does not produce runoff. This research introduces a variable pulsed irrigation algorithm (VPIA) based on an ON–OFF pulsing technique to conserve irrigation water through (1) decreasing the runoff losses by considering the soil infiltration rate, surface storage capacity, and sprinkler wetting diameter; and (2) ensuring a high level of water distribution uniformity in the direction of machine movement. From a wide range of pulse numbers and widths tested applying a certain water depth to a sandy loam soil, the best solution that gives the lowest runoff and highest uniformity while delivering an acceptable water depth was selected. A MATLAB code was written to simulate the soil infiltration rate, the sprinkler application rate, and to apply the proposed algorithm. The simulation results showed a runoff reduction of at least 90.7% with a high level of distribution uniformity in the direction of movement while delivering the highest possible irrigation depth using the lowest number of pulses.
Increasing the power conversion efficiency (PCE) of silicon solar cells by improving their junction properties or minimizing light reflection losses remains a major challenge. Extensive studies were carried out in order to develop an effective antireflection coating for monocrystalline solar cells. Here we report on the preparation of a nanostructured cerium oxide thin film by pulsed laser deposition (PLD) as an antireflection coating for silicon solar cell. The structural, optical, and electrical properties of a cerium oxide nanostructure film are investigated as a function of the number of laser pulses. The X-ray diffraction results reveal that the deposited cerium oxide films are crystalline in nature and have a cubic fluorite. The field
... Show MoreThis contribution investigates the impact of adding transition metal of Ti to CeOy samples at various concentrations referring to 0, 15.84, 24.46, 34.46, 36.23, 38.46, 45.38% and pure TiOy, correspondingly. The samples were fabricated by the magnetron sputtering technique. X-ray diffraction (XRD) configurations demonstrate the presence of α-Ce2O3 and Ce2O3 phases with increased Ti contents in the systems. X-ray photoelectron spectroscopy (XPS) experimentation confirms the purity of the S1-sample (CeO2) and the purity of the S8-sample (TiO2). Further XPS analysis reveals that Ti incorporation in the doped systems functions as a reducing agent because of the existence of α-Ce2O3 and Ce2O3 phases. Moreover, based on UV–vis spectroscopy res
... Show MoreWe have investigated the impact of laser pulse wavelength on the quantity of ablated materials. Specifically, this study investigated the structural, optical, and morphological characteristics of tungsten trioxide (WO3) nanoparticles (NPs) that were synthesized using the technique of pulsed-laser ablation of a tungsten plate. A DD drop of water was used as the ablation environment at a fixed fluence at 76.43 J/cm2 and pulse number was 400 pulses of the laser. The first and second harmonic generation ablations were carried out, corresponding to wavelengths of 1064 and 532 nm, respectively. The Q-switched Nd: YAG laser operates at a repetition rate of 1 Hz and has a pulse width of roughly 15 ns. These parameters are applicable to both wavelen
... Show MoreFracture pressure gradient prediction is complementary in well design and it is must be considered in selecting the safe mud weight, cement design, and determine the optimal casing seat to minimize the common drilling problems. The exact fracture pressure gradient value obtained from tests on the well while drilling such as leak-off test, formation integrity test, cement squeeze ... etc.; however, to minimize the total cost of drilling, there are several methods could be used to calculate fracture pressure gradient classified into two groups: the first one depend on Poisson’s ratio of the rocks and the second is fully empirical methods. In this research, the methods selected are Huubert and willis, Cesaroni I, Cesaroni II,
... Show MoreThe estimation of quantity of liquid that is collected from gas/oil separation system is a very complex task because it requires the application of the flash calculations which needs to solve the cubic equation of state and to use some numerical techniques. These difficulties can be overcome by a computer model which requires a lot of experimental data, long time, and experience.
This paper adopts a new technique to simplify this problem. It suggests new correlations for optimum separator pressure for separation station of heavy oils. The correlations have been achieved for two- and three- stage separation systems.
The co
Equation Boizil used to Oatae approximate value of bladder pressure for 25 healthy people compared with Amqas the Alrotinahh ways used an indirect the catheter Bashaddam and found this method is cheap and harmless and easy
Single long spiral tube column pressure swing adsorption (PSA) unit, 25 mm diameter, and 6 m length was constructed to study the separation of water from ethanol at azeotropic concentration of 95 wt%. The first three meters of the column length acted as a vaporizer and the remaining length acted as an adsorber filled by commercial 3A zeolite. The effect of pressure, temperature and feed flow rate on the product ethanol purity, process recovery and productivity were studied. The results showed that ethanol purity increased with temperature and pressure and decreased with feed flow rate. The purity decreased with increasing productivity. The purity range was 98.9 % to 99.6 %, the recovery range was 0.82 to 0.92 and the productivity range w
... Show MoreA study to find the optimum separators pressures of separation stations has been performed. Stage separation of oil and gas is accomplished with a series of separators operating at sequentially reduced pressures. Liquid is discharged from a higher-pressure separator into the lower-pressure separator. The set of working separator pressures that yields maximum recovery of liquid hydrocarbon from the well fluid is the optimum set of pressures, which is the target of this work.
A computer model is used to find the optimum separator pressures. The model employs the Peng-Robinson equation of state (Peng and Robinson 1976) for volatile oil. The application of t
Database is characterized as an arrangement of data that is sorted out and disseminated in a way that allows the client to get to the data being put away in a simple and more helpful way. However, in the era of big-data the traditional methods of data analytics may not be able to manage and process the large amount of data. In order to develop an efficient way of handling big-data, this work studies the use of Map-Reduce technique to handle big-data distributed on the cloud. This approach was evaluated using Hadoop server and applied on EEG Big-data as a case study. The proposed approach showed clear enhancement for managing and processing the EEG Big-data with average of 50% reduction on response time. The obtained results provide EEG r
... Show More