This paper proposes and tests a computerized approach for constructing a 3D model of blood vessels from angiogram images. The approach is divided into two steps, image features extraction and solid model formation. In the first step, image morphological operations and post-processing techniques are used for extracting geometrical entities from the angiogram image. These entities are the middle curve and outer edges of the blood vessel, which are then passed to a computer-aided graphical system for the second phase of processing. The system has embedded programming capabilities and pre-programmed libraries for automating a sequence of events that are exploited to create a solid model of the blood vessel. The gradient of the middle curve is adopted to steer the vessel’s direction, while the cross-sections of the blood vessel are formed as a sequence of circles lying in planes that are orthogonal to the gradients of the middle curves. The radii for the circles are estimated as a distance between the intersection points of the blood vessel edges with the orthogonal plane to the middle curve gradient. The system then uses these circles and the middle curve gradients to produce a solid volume that represents the 3D shape of the blood vessel. The method was tested and evaluated using different cases of angiogram images, and showed a reasonable agreement between the generated shapes and the tested images.
In this research, a non-thermal plasma system was designed and a non-thermal plasma needle was manufactured for argon gas operating at normal atmospheric pressure. The electrical description of this system studied by using two different values of voltages (4.9,8) kV. Where the results showed the small amount of electrical current consumed by the system of plasma needle up to several microns of amps, and the value of the electrical current increase with the increasing gas flow, as well as the results, showed that happen a breakdown voltage at (8) kV when gas flow (4 l/min) causing a slight decrease in the electrical current value.
Rate of zinc consumption during the cathodic protection of copper pipeline which carries saline water was measured by weight loss technique in the absence and presence of bacteria. Variables studied were solution flow rate, temperature, time and NaCl concentration. It was found that within the present range of variables; the rate of zinc consumption increases with the increase of all operating conditions. The presence of bacteria increases the zinc consumption. Fourth order multi-term model and one-term model were suggested to represent the consumption data. Nonlinear regression analysis was used to estimate the coefficients of these models, while statistical analysis was used to determine the effect of each coefficient. Both models were re
... Show MoreThis research aims at calculating the optimum cutting condition for various types of machining methods, assisted by computers, (the computer program in this research is designed to solve linear programs; the program is written in v. basic language). The program obtains the results automatically, this occur through entering the preliminary information about the work piece and the operating condition, the program makes the calculation actually by solving a group of experimental relations, depending on the type of machining method (turning, milling, drilling). The program was transferred to package and group of windows to facilitate the use; it will automatically print the initial input and optimal solution, and thus reduce the effort and t
... Show MoreIn this research project, a tip-tilting angle of a photovoltaic solar cell was developed to increase generated electrical power output. An active, accurate, and simple dual-axis tracking system was designed by using an Arduino Uno microprocessor. The system consisted of two sections: software and apparatus (hardware). It was modified by using a group of light-dependent resistor sensors, and two DC servo motors were utilized to rotate the solar panel to a location with maximum sunlight. These components were arranged in a mechanical configuration with the gearbox. The three locations of the solar cell were chosen according to the tilt angle values, at zero angles, which included an optimal 33-degree angle for the Baghdad location and
... Show MoreInterface evaluation has been the subject of extensive study and research in human-computer interaction (HCI). It is a crucial tool for promoting the idea that user engagement with computers should resemble casual conversations and interactions between individuals, according to specialists in the field. Researchers in the HCI field initially focused on making various computer interfaces more usable, thus improving the user experience. This study's objectives were to evaluate and enhance the user interface of the University of Baghdad's implementation of an online academic management system using the effectiveness, time-based efficiency, and satisfaction rates that comply with the task questionnaire process. We made a variety of interfaces f
... Show MoreThe electrochemical behavior of carbon steel in water sweetening station in Libya has been studied in the range of ( 293–333 oC) using weight loss technique. Measurements were carried out over a range of Reynolds number (5000 – 25000).An apparatus was designed for studying the corrosion process in the turbulent regime, which is of industrial significance. It was found that The corrosion rate of carbon steel in water sweetening station is under diffusion control and increases with increasing Reynolds number. On the other hand the variation of corrosion rate with temperature in the range of (293–333 oC) was found to follow Arrhenius equation and the activation energy approximately the same except at low Reynolds
... Show MoreThis paper presents an analysis solution for systems of partial differential equations using a new modification of the decomposition method to overcome the computational difficulties. Convergence of series solution was discussed with two illustrated examples, and the method showed a high-precision, being a fast approach to solve the non-linear system of PDEs with initial conditions. There is no need to convert the nonlinear terms into the linear ones due to the Adomian polynomials. The method does not require any discretization or assumption for a small parameter to be present in the problem. The steps of the suggested method are easily implemented, with high accuracy and rapid convergence to the exact solution,
... Show MoreFunctionalized Multi-Walled Carbon Nanotubes (MWCNTs-OH) network with thickness 4μm was made by the vacuum filtration from suspension (FFS) method. The morphology, structure and optical properties of the MWCNTs film were characterized by SEM and UV-Vis. spectra techniques. The SEM images reflected highly ordered network in the form of ropes or bundles with close-packing which looks like spaghetti. The absorbance spectrum revealed that the network has a good absorbance in the UV-Vis. region. The gas sensor system was used to test the MWCNT-OH network to detect NH3gas at room temperature. The resistance of the sensor was increased when exposed to the NH3gas. The sensitivities of the network w
... Show More