This paper proposes and tests a computerized approach for constructing a 3D model of blood vessels from angiogram images. The approach is divided into two steps, image features extraction and solid model formation. In the first step, image morphological operations and post-processing techniques are used for extracting geometrical entities from the angiogram image. These entities are the middle curve and outer edges of the blood vessel, which are then passed to a computer-aided graphical system for the second phase of processing. The system has embedded programming capabilities and pre-programmed libraries for automating a sequence of events that are exploited to create a solid model of the blood vessel. The gradient of the middle curve is adopted to steer the vessel’s direction, while the cross-sections of the blood vessel are formed as a sequence of circles lying in planes that are orthogonal to the gradients of the middle curves. The radii for the circles are estimated as a distance between the intersection points of the blood vessel edges with the orthogonal plane to the middle curve gradient. The system then uses these circles and the middle curve gradients to produce a solid volume that represents the 3D shape of the blood vessel. The method was tested and evaluated using different cases of angiogram images, and showed a reasonable agreement between the generated shapes and the tested images.
Surface Plasmon Resonance (SPR)-based plastic optical fiber sensor for estimating the concentration and refractive index of sugar in human blood serum. The sensor is fabricated by a small part (10mm) of optical fiber in the middle is embedded in a resin block and then the polishing process is done, after that it is deposited with about (40nm) thickness of gold metal. The blood serum is placed on gold coated core of an Optical grade plastic optical fiber of 980 µm core diameter.
In this paper, we studied the spark corona discharge in tap and distillited waters. The results show the shape of cone that generated on the tip of capillary tube is different with conductivity of liquids. The blue glow appears at the end of capillary tube and the drop extends into a cone. In addition, the conducitivity is affected on the relationship between the appearance of the blue glow discharge with the applied voltage. The size of the cone decreases with an increase in applied voltage. The cone diameter at the base of capillary tube oscillates with period approximately 1 Sec. this oscillates in the cone diameters is due to the change distance between the liquid electrode and the surface of liquid. The intensity of spark corona dis
... Show MoreThis research studying the phenomenon of Doppler (frequency Doppler) as a method through which the direction and speed of the blood cells flows in blood vessels wear measured. This Doppler frequency is relied upon in medicine for measuring the speed of blood flow, because the blood flow is an important concept from the concepts of medicine. It represents the function and efficient of the heart and blood vessels in the body so any defect in this function will appear as a change in the speed of blood flow from the normal value assumed. As this speed changes alot in cases of disease and morbidity of the heart, so in order to identify the effect of changing the Doppler frequency on the speed of blood flow and the relationship of
... Show More
The aim of the research is to identify the effect of instructional design according to Kagan structure among the first intermediate school student’s, and how skills could help in generating information in mathematics. In accordance with the research objectives, the researcher has followed the experimental research method by adopting an experimental design with two equivalent groups of post-test to measure skills in generating information. Accordingly, the researcher raised two main null hypotheses: there were no statistically significant differences at the level of significance (0.05) between the average scores of the experimental group who studied the material according to Kagan structure and th
... Show MoreAlthough its wide utilization in microbial cultures, the one factor-at-a-time method, failed to find the true optimum, this is due to the interaction between optimized parameters which is not taken into account. Therefore, in order to find the true optimum conditions, it is necessary to repeat the one factor-at-a-time method in many sequential experimental runs, which is extremely time-consuming and expensive for many variables. This work is an attempt to enhance bioactive yellow pigment production by Streptomyces thinghirensis based on a statistical design. The yellow pigment demonstrated inhibitory effects against Escherichia coli and Staphylococcus aureus and was characterized by UV-vis spectroscopy which showed lambda maximum of
... Show MoreThis paper aims to develop a technique for helping disabled people elderly with physical disability, such as those who are unable to move hands and cannot speak howover, by using a computer vision; real time video and interaction between human and computer where these combinations provide a promising solution to assist the disabled people. The main objective of the work is to design a project as a wheelchair which contains two wheel drives. This project is based on real time video for detecting and tracking human face. The proposed design is multi speed based on pulse width modulation(PWM), technique. This project is a fast response to detect and track face direction with four operations movement (left, right, forward and stop). These opera
... Show MoreNatural convection heat transfer is experimentally investigated for laminar air flow in a vertical circular tube by using the boundary condition of constant wall heat flux in the ranges of (RaL) from (1.1*109) to (4.7*109). The experimental set-up was designed for determining the effect of different types of restrictions placed at entry of heated tube in bottom position, on the surface temperature distribution and on the local and average heat transfer coefficients. The apparatus was made with an electrically heated cylinder of a length (900mm) and diameter (30mm). The entry restrictions were included a circular tube of same diameter as the heated cylinder but with lengths of (60cm, 120cm), sharp-edge and
... Show MoreThis paper represents an experimentalattempt to predict the influence of CO2-MAG welding variables on the shape factors of the weld joint geometry. Theinput variables were welding arc voltage, wire feeding speed and gas flow rate to investigate their effects on the shape factorsof the weld joint geometry in terms of weld joint dimensions (bead width, reinforcement height, and penetration). Design of experiment with response surface methodology technique was employed to buildmathematical models for shape factors in terms of the input welding variables. Thepredicted models were found quadratic type and statistically checked by ANOVA analysis for adequacy purpose. Also, numerical and graphical optimizations were carried out
... Show MoreThis paper deals with a Twin Rotor Aerodynamic System (TRAS). It is a Multi-Input Multi-Output (MIMO) system with high crosscoupling between its two channels. It proposes a hybrid design procedure that combines frequency response and root locus approaches. The proposed controller is designated as PID-Lead Compensator (PIDLC); the PID controller was designed in previous work using frequency response design specifications, while the lead compensator is proposed in this paper and is designed using the root locus method. A general explicit formula for angle computations in any of the four quadrants is also given. The lead compensator is designed by shifting the dominant closed-loop poles slightly to the left in the s-plane. This has the effect
... Show MoreThis paper proposes a new structure for a Fractional Order Sliding Mode Controller (FOSMC) to control a Twin Rotor Aerodynamic System (TRAS). The new structure is composed by defining two 3-dimensional sliding mode surfaces for the TRAS model and introducing fractional order derivative integral in the state variables as well as in the control action. The parameters of the controller are determined so as to minimize the Integral of Time multiplied by Absolute Error (ITAE) performance index. Through comparison, this controller outperforms its integer counterpart in many specifications, such as reducing the delay time, rise time, percentage overshoot, settling time, time to reach the sliding surface, and amplitude of chattering in control inpu
... Show More