Hypothesis Nanofluid flooding has been identified as a promising method for enhanced oil recovery (EOR) and improved Carbon geo-sequestration (CGS). However, it is unclear how nanoparticles (NPs) influence the CO2-brine interfacial tension (γ), which is a key parameter in pore-to reservoirs-scale fluid dynamics, and consequently project success. The effects of pressure, temperature, salinity, and NPs concentration on CO2-silica (hydrophilic or hydrophobic) nanofluid γ was thus systematically investigated to understand the influence of nanofluid flooding on CO2 geo-storage. Experiments Pendant drop method was used to measure CO2/nanofluid γ at carbon storage conditions using high pressure-high temperature optical cell. Findings CO2/nanofluid γ was increased with temperature and decreased with increased pressure which is consistent with CO2/water γ. The hydrophilicity of NPs was the major factor; hydrophobic silica NPs significantly reduced γ at all investigated pressures and temperatures while hydrophilic NPs showed only minor influence on γ. Further, increased salinity which increased γ can also eliminate the influence of NPs on CO2/nanofluid γ. Hence, CO2/brine γ has low, but, reasonable values (higher than 20 mN/m) at carbon storage conditions even with the presence of hydrophilic NPs, therefore, CO2 storage can be considered in oil reservoirs after flooding with hydrophilic nanofluid. The findings of this study provide new insights into nanofluids applications for enhanced oil recovery and carbon geosequestration projects.
This work deals with the effect of adding aluminum nanoparticles on the mechanical properties, micro-hardness and porosity of memory-shape alloys (Cu-Al-Ni). These alloys have wide applications in various industrial fields such as (high damping compounds and self-lubricating applications). The samples are manufactured using the powder metallurgy method, which involved pressing in only one direction and sintered in a furnace surrounded by an inert gas. Four percentages (0%, 5%, 10%, and 15%) of aluminum nanoparticles were fabricated, which depended on the weight of aluminum powder (13%) in the sample under study. To find out which phase is responsible for the reliability of the formation of this type of alloy and its porosity, X-ray diffr
... Show MoreThe research aims to achieve a set of objectives, the most important of which is to educate the management of companies operating in the private sector about the advantages and risks of using creative accounting practices, as on the one hand they serve the interests of the company and improve its image, and on the other hand it exposes it to the risks of non-compliance with tax laws and legislation or the risks of default and bankruptcy as a result of exploiting gaps and flexibility in the application Accounting standards, and in line with the objectives and through the research problem that was formulated in the form of a question (Are their creative accounting practices that are reflected in the honesty and fairness of financia
... Show MoreThe Significance of this research comes as a result of the development occurring in various life fields including the field of technical and technological development in the domain of industrial products which are in direct touch with the receiver, and because the study of deletion and addition mechanism didn't Find the Scientific space through researches and Studies. On this basis , the aim of this study is defining the forms of deletion and addition mechanism in designing the industrial product in a way that fits the functional presser . As to the limitations of this study, they involve examples of readymade Turkish House furniture, which is available in Iraqi local markets in Baghdad city 2013. The study included four chapters. The fi
... Show MoreWhen employing shorter (sub picosecond) laser pulses, in ablation kinetics the features appear which can no longer be described in the context of the conventional thermal model. Meanwhile, the ablation of materials with the aid of ultra-short (sub picosecond) laser pulses is applied for micromechanical processing. Physical mechanisms and theoretical models of laser ablation are discussed. Typical associated phenomena are qualitatively regarded and methods for studying them quantitatively are considered. Calculated results relevant to ablation kinetics for a number of substances are presented and compared with experimental data. Ultra-short laser ablation with two-temperature model was quantitatively investigated. A two-temperature model
... Show MoreNH3 gas sensor was fabricated based on deposited of Functionalized Multi-Walled Carbon Nanotubes (MWCNTs-OH) suspension on filter paper substrates using suspension filtration method. The structural, morphological and optical properties of the MWCNTs film were characterized by XRD, AFM and FTIR techniques. XRD measurement confirmed that the structure of MWCNTs is not affected by the preparation method. The AFM images reflected highly ordered network in the form of a mat. The functional groups and types of bonding have appeared in the FTIR spectra. The fingerprint (C-C stretch) of MWCNTs appears in 1365 cm-1, and the backbone of CNTs observed at 1645 cm-1. A homemade sensi
... Show MoreAluminum plasma was generated by the irradiation of the target
with Nd: YAG laser operated at a wavelength of 1064 nm. The
effect of laser power density and the working pressure on spectral
lines generating by laser ablation, were detected by using optical
spectroscopy. The electron density was measured using the Stark
broadening of aluminum lines and the electron temperature by
Boltzmann plot method it is one of the methods that are used. The
electron temperature Te, electron density ne, plasma frequency
and Debye length increased with increasing the laser peak
power. The electron temperature decrease with increasing gas
pressure.
In present work an investigation for precise hole drilling via continuous wave (CW) CO2 laser at 150 W maximum output power and wavelength 10.6 μm was achieved with the assistance of computerized numerical controlled (CNC) machine and assist gases. The drilling process was done for thin sheets (0.1 – 0.3 mm) of two types of metals; stainless steel (sst) 321H, steel 33 (st). Changing light and process parameters such as laser power, exposure time and gas pressure was important for getting the optimum results. The obtained results were supported with computational results using the COMSOL 3.5a software code.
Phonetics has close relevance with Musicology; in this study I decided explaining the interlinkages and harmony between Phonetics and Musicology. Linguists preceded philosophers in an attempt to link Phonetics with Musicology; the 1st serious attempt to link Phonetics with Musicology was done by Ibn Jeny (Dead 392 IC), but the real attempt is found with Farabi through his book under title Al Musiqa Al Kabeer, he defined music and link it with tune and relation between melody and tone, This is the same as pointed out by Ikhwan Al Safa who followed the doctrine of al-Farabi, their attention was with music and link it with phoneme, as they made music independent science, and they created special mathematics rules for it. Melody in music can
... Show MoreIn this paper the effect of mixing TiO2 nanoparticles with epoxy resin is studied. The TiO2 nanoparticles would be synthesis and characterized by scanning electron microscopy (SEM), XRD FTIR, for two particle sizes of 50 and 25 nm. The thermal conductivity is measured with and without composite epoxy resin; the results showed that the thermal conductivity was increased as nanoparticle concentration increased too. The thermal conductivity was increased as particle size decreased.