Survival analysis is widely applied in data describing for the life time of item until the occurrence of an event of interest such as death or another event of understudy . The purpose of this paper is to use the dynamic approach in the deep learning neural network method, where in this method a dynamic neural network that suits the nature of discrete survival data and time varying effect. This neural network is based on the Levenberg-Marquardt (L-M) algorithm in training, and the method is called Proposed Dynamic Artificial Neural Network (PDANN). Then a comparison was made with another method that depends entirely on the Bayes methodology is called Maximum A Posterior (MAP) method. This method was carried out using numerical algorithms represented by Iteratively Weighted Kalman Filter Smoothing (IWKFS) algorithm and in combination with the Expectation Maximization (EM) algorithm. Average Mean Square Error (AMSE) and Cross Entropy Error (CEE) were used as comparison’s criteria. The methods and procedures were applied to data generated by simulation using a different combination of sample sizes and the number of intervals.
Abstract
This research deals with Building A probabilistic Linear programming model representing, the operation of production in the Middle Refinery Company (Dura, Semawa, Najaif) Considering the demand of each product (Gasoline, Kerosene,Gas Oil, Fuel Oil ).are random variables ,follows certain probability distribution, which are testing by using Statistical programme (Easy fit), thes distribution are found to be Cauchy distribution ,Erlang distribution ,Pareto distribution ,Normal distribution ,and General Extreme value distribution . &
... Show MoreThe background subtraction is a leading technique adopted for detecting the moving objects in video surveillance systems. Various background subtraction models have been applied to tackle different challenges in many surveillance environments. In this paper, we propose a model of pixel-based color-histogram and Fuzzy C-means (FCM) to obtain the background model using cosine similarity (CS) to measure the closeness between the current pixel and the background model and eventually determine the background and foreground pixel according to a tuned threshold. The performance of this model is benchmarked on CDnet2014 dynamic scenes dataset using statistical metrics. The results show a better performance against the state-of the art
... Show MoreIn recent years, non-oil primary balance indicator has been given considerable financial important in rentier state. It highly depends on this indicator to afford a clear and proper picture of public finance situation in term of appropriate and sustainability in these countries, due to it excludes the effect of oil- rental from compound of financial accounts which provide sufficient information to economic policy makers of how economy is able to create potential added value and then changes by eliminating one sided shades of economy. In Iraq, since, 2004, the deficit in value of this indicator has increased, due to almost complete dependence on the revenues of the oil to finance the budget and the obvious decline of the non-oil s
... Show MoreWe introduce some new generalizations of some definitions which are, supra closure converge to a point, supra closure directed toward a set, almost supra converges to a set, almost supra cluster point, a set supra H-closed relative, supra closure continuous functions, supra weakly continuous functions, supra compact functions, supra rigid a set, almost supra closed functions and supra perfect functions. And we state and prove several results concerning it
This study discussed a biased estimator of the Negative Binomial Regression model known as (Liu Estimator), This estimate was used to reduce variance and overcome the problem Multicollinearity between explanatory variables, Some estimates were used such as Ridge Regression and Maximum Likelihood Estimators, This research aims at the theoretical comparisons between the new estimator (Liu Estimator) and the estimators
Abstract. In this work, some new concepts were introduced and the relationship between them was studied. These concepts are filter directed-toward, nano-closure-directed-toward and nano-closure-converge to point, and some theories and results about these concepts were presented. A definition almost-nano-converges for set, almost-nano-cluster-point, and definition of quasi-nano-Hausdorff-closed and was also called nano-Hausdorff-closed relative, were also presented several theories related to these definitions were presented and the relationship between them was studied . We also provided other generalizations, including nano closure continuous mappings and it was also called as nano-weaklycontinuous- mappings, as well as providing a definit
... Show MoreHuman detection represents a main problem of interest when using video based monitoring. In this paper, artificial neural networks, namely multilayer perceptron (MLP) and radial basis function (RBF) are used to detect humans among different objects in a sequence of frames (images) using classification approach. The classification used is based on the shape of the object instead of depending on the contents of the frame. Initially, background subtraction is depended to extract objects of interest from the frame, then statistical and geometric information are obtained from vertical and horizontal projections of the objects that are detected to stand for the shape of the object. Next to this step, two ty
... Show MoreIn this paper, image compression technique is presented based on the Zonal transform method. The DCT, Walsh, and Hadamard transform techniques are also implements. These different transforms are applied on SAR images using Different block size. The effects of implementing these different transforms are investigated. The main shortcoming associated with this radar imagery system is the presence of the speckle noise, which affected the compression results.
In light of the development in computer science and modern technologies, the impersonation crime rate has increased. Consequently, face recognition technology and biometric systems have been employed for security purposes in a variety of applications including human-computer interaction, surveillance systems, etc. Building an advanced sophisticated model to tackle impersonation-related crimes is essential. This study proposes classification Machine Learning (ML) and Deep Learning (DL) models, utilizing Viola-Jones, Linear Discriminant Analysis (LDA), Mutual Information (MI), and Analysis of Variance (ANOVA) techniques. The two proposed facial classification systems are J48 with LDA feature extraction method as input, and a one-dimen
... Show More