Nowadays nanoparticles are used in many fields of life all over the world, and there are numerous ways to obtain them: chemical, physical and biological processes. In recent times, the biological method for the synthesis of nanoparticles associated with using plant extract is widely spread. Optimal conditions for synthesis of silver nanoparticles using aqueous seeds extract of Myristica fragrance were highlighted in this research, such as type of plant extract, weight of extracted plant material, volume ratio of plant extract to AgNO3 and temperature of reaction. The study proved that the optimal status for AgNPs synthesis by using 10 g of M. fragrance seeds powder were added to 100 mL boiled distilled water, then homogenized and filtered after 24 hours. Aliquot of 5 mL of hot aqueous extract were added to 45 mL of 1*10-3 M AgNO3 solution in the water bath with a magnetic stirrer for the bio-reduction process at 60 °C. The biological activity of AgNPs nanoparticles was evaluated by using well diffusion method and biofilm formation for G+ and G- bacteria including Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis and Klebsiella pneumonia, while the effect of AgNPs nanoparticles on plasmid curing was investigated for Escherichia coli and Staphylococcus aureus only. Atomic Force Microscopy (AFM) images proved that Ag particles are in nanometer- size and have granular shape, the size of silver nanoparticle is (74.55 nm) for the sample taken after 16 min of the reaction. Nanoparticles of various concentrations have proven effective in inhibiting bacterial growth after antimicrobial activity test, biofilm formation and plasmid curing as they exhibited a remarkable effect in inhibiting the growth of both Gram-positive and negative bacteria
In this study, polymeric ultrafiltration (UF) membranes were prepared by phase inversion method to obtain both antibacterial and organic antifouling properties. The membranes were cast from a solution of polyvinylidene fluoride (PVDF) and formative silver (Ag) nanoparticles were successfully immobilized on a polymer. This was done using a solvent N, N-dimethylformamide (DMF) which is a solvent for the PVDF polymer meanwhile it is a reducing agent for silver ion. The effect of silver nanoparticles additives on the performance of polymeric ultrafiltration membrane was verified. Chemical composition and morphology of the surfaces of the membranes were characterized by Fourier transform infrared spectroscopy
... Show MoreThe antioxidant and antibacterial activities of ethanolic extract and phenolic compounds extract of Lemon balm (Melissa officinalis) and Oregano (Oreganum vulgare) plants were studied; the phenolic content and the relationship between these compounds and the above activities were also investigated. The results showed that the Lemon balm had the highest phenolic content (56.5% mg g) and the phenolic content of Oregano was twice lower than Lemon balm. Lemon balm has the highest antioxidant activity which causes lipid peroxidation inhibition activity of linoleic acid (90.5%), this activity was more than ?-tocopherole antioxidant activity (79.3 %). It was found that the main source of antioxidant activity o
... Show MoreA field experiment was carried out during two winter season 2013, 2014 at the field of the Department of Field Crops, College of Agriculture, University of Baghdad, to study the effect of seeds soaking with Gibberellic acid and foliar with Abscisic Acid on the growth, yield, and content of Anise oil seeds using factorial experiment within RCBD design with three replicates. The seeds was treated within GA3 were soaked with two concentrations of 30, and 60 mg. litter-1 in addition to without soaking and the code has been B0 , B1 , B2 overlapped these transactions with two concentrations of Abscisic Acid 3, and 6 mg. litter-1 in addition to without foliar A0 , A1 , A2The seeds to be treated with GA3 are soaked for 24 hours prior
... Show MoreIntroduction and Aim: Klebsiella pneumoniae is a Gram-negative bacterium responsible for a wide range of infections, including respiratory tract infections (RTIs). This research was aimed to study the antibacterial and antibiofilm effect of AgNPs produced by Gram positive and negative bacteria on RTIs associated with K. pneumoniae. Materials and Methods: The biofilm formation of K. pneumoniae was determined by tube method qualitatively from select bacterial species characterized by UV-Visible spectroscopy. The antibacterial susceptibility of the bacteria AgNPs was tested for their antibacterial and antibiofilm activity on a clinical isolate of K. pneumoniae. Results: K. pneumoniae isolated from RTIs were strong biofilm producers. The ant
... Show MoreThis research investigates the impact of varying concentrations of silver oxide on the structure and morphology of phosphate bioactive glass (PBG). PBGs are gaining popularity as a potential replacement for traditional silicate glasses in biomedical applications due to their adjustable chemical resistance and exceptional bioactivity. Upon examination of the scanning electron microscope of the composites without Ag2O, it was observed that the grains tended to merge together, and the surface particles appeared to be larger than those in composites with Ag2O at concentrations of 0.25, 0.5, and 0.75 wt%. The study found that the diffraction pattern of phosphate bioactive glass composites sintered without Ag2O showed the presence of Stro
... Show MoreBacterial water pollution is a genuine general wellbeing concern since it causes various maladies. Antimicrobial nanofibers can be integrated by incorporating nanobiocides, for example, silver nanoparticles into nanofibers. Nylon 6 was dissolved in formic acid at a concentration of (25 wt. %) and tough antibacterial (AgNO3/Nylon) nanofibers were produced utilizing electrospinning system. Polymer solution was tested before accomplishing electrospinning process to acquire its surface tension, electric conductivity and viscosity, where every one of those parameters increased relatively with increasing concentration of (AgNO3) additions. SEM and EDX spectra were utilized to focus on the morphology, surface elemental mem
... Show MoreZnS:Ce3+ nanoparticles were prepared by a simple microwave irradiation method under mild condition. The starting materials for the synthesis of ZnS:Ce3+ quantum dots were zinc acetate (R & M Chemical) as zinc source, thioacetamide as a sulfur source, cerium chloride as cerium source and ethylene glycol as a solvent. All chemicals were analytical grade products and used without further purification. The quantum dots of ZnS:Ce3+ with cubic structure were characterized by X-ray powder diffraction (XRD), the morphology of the film is seen by scanning electron microscopy (SEM) also by field effect scanning electron microscopy (FESEM) and XRD. Upon exposure to 460 nm light at zero bias voltage, ZnS:Ce3+/p-Si showed a high sensitivity of 4000% an
... Show MoreNormally, bacteria exposed to antibiotics at sub minimal inhibitory concentrations (MIC) inside the host. Therefore, the current study aimed to comprehend the association among hemolysins, biofilm, as well as gentamicin resistance in local MRSA isolates. Around 35 Staphylococcus aureus locally isolated from different clinical specimens were employed in this study. Methicillin resistance was detected via cefoxitin disk diffusion and mecA amplification methods. MIC of gentamicin was estimated by broth microdilution method. Hemolysin genes involving hla, hlb, hld, and hlg were determined using multiplex polymerase chain reaction (PCR) technique. Microtiter plate method was employed for biofilm assessment in the presence and absence of gentamic
... Show More
