This article aims to determine the time-dependent heat coefficient together with the temperature solution for a type of semi-linear time-fractional inverse source problem by applying a method based on the finite difference scheme and Tikhonov regularization. An unconditionally stable implicit finite difference scheme is used as a direct (forward) solver. While by the MATLAB routine lsqnonlin from the optimization toolbox, the inverse problem is reformulated as nonlinear least square minimization and solved efficiently. Since the problem is generally incorrect or ill-posed that means any error inclusion in the input data will produce a large error in the output data. Therefore, the Tikhonov regularization technique is applied to obtain stable and accurate results. Finally, to demonstrate the accuracy and effectiveness of our scheme, two benchmark test problems have been considered, and its good working with different noise levels.
Free boundary problems with nonlinear diffusion occur in various applications, such as solidification over a mould with dissimilar nonlinear thermal properties and saturated or unsaturated absorption in the soil beneath a pond. In this article, we consider a novel inverse problem where a free boundary is determined from the mass/energy specification in a well-posed one-dimensional nonlinear diffusion problem, and a stability estimate is established. The problem is recast as a nonlinear least-squares minimisation problem, which is solved numerically using the
A New Spectrophotometric Methods are improved for determination Metronidazole (MTZ) and Metronidazolebenzoate (MTZB) depending on1STand 2nd derivative spectrum of the two drugs by using ethanol as a solvent. Many techniques were proportionated with concentration (peak high to base line, peak to peak and peak area). The linearity of the methodsranged between(1-25µg.ml-1) is obtained. The results were precise and accurate throw RSD% were between (0.041-0.751%) and (0.0331-0.452%), Rec% values between (97.78, 101.87%) and (98.033-102.39%) while the LOD between (0.051-0.231 µg.ml-1) and (0.074-1.04 µg.ml-1) and LOQ between (0.170-0.770µg.ml-1) and (0.074-0.313 µg.ml-1) of (MTZ) and of (MTZB) respectively. These Methods were successfully ap
... Show MoreIn this paper, a sufficient condition for stability of a system of nonlinear multi-fractional order differential equations on a finite time interval with an illustrative example, has been presented to demonstrate our result. Also, an idea to extend our result on such system on an infinite time interval is suggested.
In this paper, a discretization of a three-dimensional fractional-order prey-predator model has been investigated with Holling type III functional response. All its fixed points are determined; also, their local stability is investigated. We extend the discretized system to an optimal control problem to get the optimal harvesting amount. For this, the discrete-time Pontryagin’s maximum principle is used. Finally, numerical simulation results are given to confirm the theoretical outputs as well as to solve the optimality problem.