Proteus mirabilis isolates have been intensively researched for their capacity to cause urinary tract infections (UTIs) and their swarming motility, although little is known about this phenomenon. Probiotic Lactobacillus species, which are beneficial bacteria, are being studied worldwide as therapeutic and preventative agents against bacterial infections. This study investigated Lactobacillus supernatants as a potential new treatment against Proteus mirabilis. In addition to testing their antimicrobial and anti-swarming activities, the research also aimed to understand the genetic mechanisms behind the observed phenotypic changes. Methods. A total of 150 urine specimens were collected from UTI patients at various hospitals in Baghdad. Direct culture was performed by streaking the specimens on differential media. RNA was extracted and purified from the bacterial isolates, and then reverse transcription and quantitative PCR were used to evaluate swarming-related gene expression. Gene expression was assessed relative to a reference gene to reveal how probiotics regulate swarming behavior at the genetic level. Gene expression patterns varied, indicating complex genomic responses to Lactobacillus exposure. Results. UTIs affected 50 males (33.33%) and 100 females (66.66%) of various ages. Proteus mirabilis was identified in 30 (20%) of the 150 samples. Resistance was observed in 25 (83.33%) isolates for azithromycin and amoxicillin/clavulanic acid, and in 22 (73.33%) isolates for meropenem. Real-time PCR showed significant alterations in the expression of four swarming-related genes (rsbA, umoD, ZapA, and FliL). The rsbA gene showed a notable increase in expression, while another sample displayed a decrease. The umoD gene exhibited the largest change, with expression doubling in some cases. ZapA showed the greatest increase, nearly tripling in expression in one sample. FliL expression also rose in multiple isolates. Swarming activity was positively correlated with gene expression levels for rsbA (r = 0.8, p = 0.009), umoD (r = 0.635, p = 0.045), ZapA (r = 0.942, p = 0.001), and FliL (r = 0.894, p = 0.001). Conclusions. The study reveals a complex gene network regulating the swarming motility of Proteus mirabilis. It suggests that Lactobacillus acidophilus supernatants can modify gene expression and bacterial motility, potentially aiding in the treatment of UTIs.
Background: the aim of this study was to evaluate the effect of different surface acids treatments (37%phospjoric acid, 5%hydrofluoric acid, 1.23 acidulated phosphate fluoride) of feldspathic ceramic VITA 3D MASTER , and the effect of thermocycling on shear bond strength using a ceramic repair kit (ivoclar/vivadent). Material and Methods: sixty Nickel-Chromium metal base plates were prepared(9mm diameter,3mm depth) using lost wax technique, 2mm thick layer of ceramic(VITA 3D MASTER) fused to metal plates, all specimens were embedded in acrylic resin blocks except their examined surfaces and divided into 3 main groups 20 specimens each, Grp A: treatment with 37%phosphoric acid for 2 mins, Grp B: etching with 5% hydrofluoric acid for 2mins,
... Show MoreThe present work involves studying the effect of electrolyte composition [@1= 0.5 wt.% NH4F / 5% H2O / 5% Glycerol (GLY)/ 90% Ethylene Glycol (EG)] and [ @2= 0.5 wt. % NH4F / 5% H2O / 95% Ethylene Glycol (EG)] on the structural and photoelectrochemical properties of titania nanotubes arrays (TNTAs). TNTAs substrates were successfully carried out via anodization technique and were carried out in 40 V for one hour in different electrolytes (@1, and @2). The properties of physicochemical of TNTAs were distinguished via an X-ray Diffractometer (XRD), Field Emission Scanning Electron Microscope (FESEM), an Energy Dispersive X-ray (EDX), and UV–visible diffuse reflectance. The photoelectrochemical response of TNTAs was evaluated
... Show MoreThe present work involves studying the effect of electrolyte composition [@1= 0.5 wt.% NH4F / 5% H2O / 5% Glycerol (GLY)/ 90% Ethylene Glycol (EG)] and [ @2= 0.5 wt. % NH4F / 5% H2O / 95% Ethylene Glycol (EG)] on the structural and photoelectrochemical properties of titania nanotubes arrays (TNTAs). TNTAs substrates were successfully carried out via anodization technique and were carried out in 40 V for one hour in different electrolytes (@1, and @2). The properties of physicochemical of TNTAs were distinguished via an X-ray Diffractometer (XRD), Field Emission Scanning Electron Microscope (FESEM), an Energy Dispersive X-ray (EDX), and UV–visible diffuse reflectance. T
... Show MoreIn this research we prepared nanofibers by electrospinning
from poly (Vinyl Alcohol) / TiO2. The spectrum of the solution
(Emission) was studied at 772 nm. Several process parameter were
Investigated as concentration of PVA, the effect of distance from
nozzle tip to the grounded collector (gap distance), and final the
effect of high voltage. We find the optimum condition to prepare a
narrow nanofibers is at concentration of PVA 16gm, the fiber has
20nm diameter
In the present study, MIG welding is carried out on low carbon steel type (AISI 1015) by using electrode ER308L of 1.5mm diameter with direct current straight polarity (DCSP). The joint geometry is of a single V-butt joint with one pass welding stroke for different plate thicknesses of 6, 8, and 10 mm. In welding experiments, AISI 1015 plates with dimensions of 200×100mm and edge angle of 60o from both sides are utilized. In this work, three main parameters related to MIG welding process are investigated, which are welding current, welding speed, heat input and plate thickness, and to achieve that three groups of plates are employed each one consists of three plates. The results indicate that increasing the weld heat input (t
... Show MoreZinc-indium-selenide ZnIn2Se4 (ZIS) ternary chalcopyrite thin film on glass with a 500 nm thickness was fabricated by using the thermal evaporation system with a pressure of approximately 2.5×10−5 mbar and a deposition rate of 12 Å/s. The effect of aluminum (Al) doping with 0.02 and 0.04 ratios on the structural and optical properties of film was examined. The utilization of X-ray diffraction (XRD) was employed to showcase the influence of aluminum doping on structural properties. XRD shows that thin ZIS-pure, Al-doped films at RT are polycrystalline with tetragonal structure and preferred (112) orientation. Where the