This study examines the causes of time delays and cost overruns in a selection of thirty post-disaster reconstruction projects in Iraq. Although delay factors have been studied in many countries and contexts, little data exists from countries under the conditions characterizing Iraq during the last 10-15 years. A case study approach was used, with thirty construction projects of different types and sizes selected from the Baghdad region. Project data was gathered from a survey which was used to build statistical relationships between time and cost delay ratios and delay factors in post disaster projects. The most important delay factors identified were contractor failure, redesigning of designs/plans and change orders, security is
... Show MoreObjective: To examined the common frequency of cervical cancer in Iraqi women. Study Design: Descriptive study Place and Duration of Study: This study was conducted at the Iraqi Cancer Agency and the Cancer Registry data from the Iraqi Ministry of Health provided assistance in data gathering from 1st April 2020 to 31st December 2021. Methods: The study examined 504 women diagnosed with cervical cancer. Their ages ranged from 20 to over 80 years. The data analysis employed descriptive statistics to determine the frequency, proportion, and incidence of cervical cancer. Results: The cervical cancer was predominantly caused by human papillomavirus in women in 2020 (1.29%) and 2021 (2.1%). In 2020, the number of cases of cervical can
... Show MoreObjective(s): To assess the behavior that impedes the eating of children with autism spectrum disorders in Baghdad city, and find out the relationships between the behaviors that impede eating of autistic children and their demographic characteristics.
Methodology: The study started from the period of 16th September 2019 to the 16th of March 2020. A non-probability (purposive) sample of 80 children with autism spectrum disorders was selected. The questionnaire was designed and composed of two parts: the first part includes the autistic children demographic data, the second part includes scales of behavior that impede eating followed by parents towards autistic child. The reliability of the questionnaire was determined through a pilot
Identifying breast cancer utilizing artificial intelligence technologies is valuable and has a great influence on the early detection of diseases. It also can save humanity by giving them a better chance to be treated in the earlier stages of cancer. During the last decade, deep neural networks (DNN) and machine learning (ML) systems have been widely used by almost every segment in medical centers due to their accurate identification and recognition of diseases, especially when trained using many datasets/samples. in this paper, a proposed two hidden layers DNN with a reduction in the number of additions and multiplications in each neuron. The number of bits and binary points of inputs and weights can be changed using the mask configuration
... Show MoreBackground : Breast cancer is the most common cancer of
women. When breast cancer is detected and treated early,
the chances for survival are better. Surgery is the most
important treatment for non-metastatic breast cancer.
Al-Kindy Col Med J 2008 Vol.5(1) 40 Original Article
Objectives : The aim of this study is to review different
clinical presentation and to evaluate types of surgical
procedures and complications in treatment of nonmetastatic breast cancer.
Method : During the period from Jun 1998 to May 2005,
93 patients with non-metastatic breast cancer were
diagnosed and treated surgically in 2 hospitals in Baghdad (
Hammad Shihab military hospital and Al-Kindy teaching
hospital).
Results : Wo
Data mining has the most important role in healthcare for discovering hidden relationships in big datasets, especially in breast cancer diagnostics, which is the most popular cause of death in the world. In this paper two algorithms are applied that are decision tree and K-Nearest Neighbour for diagnosing Breast Cancer Grad in order to reduce its risk on patients. In decision tree with feature selection, the Gini index gives an accuracy of %87.83, while with entropy, the feature selection gives an accuracy of %86.77. In both cases, Age appeared as the most effective parameter, particularly when Age<49.5. Whereas Ki67 appeared as a second effective parameter. Furthermore, K- Nearest Neighbor is based on the minimu
... Show MoreAbstract The goal of current study was to identify the relationship between addiction of self-images (Selfie) and personality disorder of narcissus, and the difference of significance the relationship between addiction self-images (selfie) and personality disorder narcissus at students of Mustansiriya university, addiction self- images (selfie) defined: a photograph that one has taken of oneself, typically one taken with a smartphone or webcam and shared via social media, edit and down lowed to social networking sites, and over time, the replacement of normal life virtual world, which is accompanied by a lack of a sense of time, and the formation of repeated patterns increase the risk of social and personal problems. To achieve the goals
... Show More