Preferred Language
Articles
/
qBZQs4oBVTCNdQwCsKM8
FDPHI: Fast Deep Packet Header Inspection for Data Traffic Classification and Management
...Show More Authors

Traffic classification is referred to as the task of categorizing traffic flows into application-aware classes such as chats, streaming, VoIP, etc. Most systems of network traffic identification are based on features. These features may be static signatures, port numbers, statistical characteristics, and so on. Current methods of data flow classification are effective, they still lack new inventive approaches to meet the needs of vital points such as real-time traffic classification, low power consumption, ), Central Processing Unit (CPU) utilization, etc. Our novel Fast Deep Packet Header Inspection (FDPHI) traffic classification proposal employs 1 Dimension Convolution Neural Network (1D-CNN) to automatically learn more representational characteristics of traffic flow types; by considering only the position of the selected bits from the packet header. The proposal a learning approach based on deep packet inspection which integrates both feature extraction and classification phases into one system. The results show that the FDPHI works very well on the applications of feature learning. Also, it presents powerful adequate traffic classification results in terms of energy consumption (70% less power CPU utilization around 48% less), and processing time (310% for IPv4 and 595% for IPv6).

Scopus Crossref
View Publication
Publication Date
Sun Dec 31 2023
Journal Name
Iraqi Journal Of Information And Communication Technology
EEG Signal Classification Based on Orthogonal Polynomials, Sparse Filter and SVM Classifier
...Show More Authors

This work implements an Electroencephalogram (EEG) signal classifier. The implemented method uses Orthogonal Polynomials (OP) to convert the EEG signal samples to moments. A Sparse Filter (SF) reduces the number of converted moments to increase the classification accuracy. A Support Vector Machine (SVM) is used to classify the reduced moments between two classes. The proposed method’s performance is tested and compared with two methods by using two datasets. The datasets are divided into 80% for training and 20% for testing, with 5 -fold used for cross-validation. The results show that this method overcomes the accuracy of other methods. The proposed method’s best accuracy is 95.6% and 99.5%, respectively. Finally, from the results, it

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Sun Feb 03 2019
Journal Name
Iraqi Journal Of Physics
Change detection of remotely sensed image using NDVI subtractive and classification methods.
...Show More Authors

Change detection is a technology ascertaining the changes of
specific features within a certain time Interval. The use of remotely
sensed image to detect changes in land use and land cover is widely
preferred over other conventional survey techniques because this
method is very efficient for assessing the change or degrading trends
of a region. In this research two remotely sensed image of Baghdad
city gathered by landsat -7and landsat -8 ETM+ for two time period
2000 and 2014 have been used to detect the most important changes.
Registration and rectification the two original images are the first
preprocessing steps was applied in this paper. Change detection using
NDVI subtractive has been computed, subtrac

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Oct 25 2022
Journal Name
Minar Congress 6
HANDWRITTEN DIGITS CLASSIFICATION BASED ON DISCRETE WAVELET TRANSFORM AND SPIKE NEURAL NETWORK
...Show More Authors

In this paper, a handwritten digit classification system is proposed based on the Discrete Wavelet Transform and Spike Neural Network. The system consists of three stages. The first stage is for preprocessing the data and the second stage is for feature extraction, which is based on Discrete Wavelet Transform (DWT). The third stage is for classification and is based on a Spiking Neural Network (SNN). To evaluate the system, two standard databases are used: the MADBase database and the MNIST database. The proposed system achieved a high classification accuracy rate with 99.1% for the MADBase database and 99.9% for the MNIST database

View Publication Preview PDF
Publication Date
Sat Dec 31 2016
Journal Name
Al-kindy College Medical Journal
A Comparison of Sagittal Sections of Short T1inversion Recovery and T2 Weighted Fast Spin Echo Magnetic Resonance Sequences for Detection of Multiple Sclerosis Spinal Cord Lesions
...Show More Authors

Background: Multiple sclerosis is a chronic autoimmune inflammatory demyelinating disease of the central nervous system of unknown etiology. Different techniques and magnetic resonance image sequences are widely used and compared to each other to improve the detection of multiple sclerosis lesions in the spinal cord. Objective: To evaluate the ability of MRI short tau inversion recovery sequences in improvementof multiple sclerosis spinal cord lesion detection when compared to T2 weighted image sequences. Type of the study: A retrospective study. Methods: this study conducted from 15thAugust 2013 to 30thJune 2014 at Baghdad teaching hospital. 22 clinically definite MS patients with clinical features suggestive of spinal cord involvement,

... Show More
View Publication Preview PDF
Publication Date
Fri Dec 01 2023
Journal Name
Al-khwarizmi Engineering Journal
Development of an ANN Model for RGB Color Classification using the Dataset Extracted from a Fabricated Colorimeter
...Show More Authors

Codes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an object under de

... Show More
Preview PDF
Scopus Crossref
Publication Date
Fri Dec 01 2023
Journal Name
Al-khwarizmi Engineering Journal
Development of an ANN Model for RGB Color Classification using the Dataset Extracted from a Fabricated Colorimeter
...Show More Authors

 

Codes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an ob

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sat Aug 12 2017
Journal Name
Journal Of Engineering
Prepare rules spatial data for soils and the Calculation of an Area in Iraq for Industrial Purposes using Geographic Information Systems (GIS)
...Show More Authors

 
      The process of soil classification in Iraq for industrial purposes is important topics that need to be extensive and specialized studies. In order for the advancement of reality service and industrial in our dear country, that a lot of scientific research touched upon the soil classification in the agricultural, commercial and other fields. No source and research can be found that touched upon the classification of land for industrial purposes directly. In this research specialized programs have been used such as geographic information system software The geographical information system permits the study of local distribution of phenomena, activities and the aims that can be determined in the loca

... Show More
View Publication Preview PDF
Publication Date
Sat Dec 31 2022
Journal Name
International Journal On “technical And Physical Problems Of Engineering”
Age Estimation Utilizing Deep Learning Convolutional Neural Network
...Show More Authors

Estimating an individual's age from a photograph of their face is critical in many applications, including intelligence and defense, border security and human-machine interaction, as well as soft biometric recognition. There has been recent progress in this discipline that focuses on the idea of deep learning. These solutions need the creation and training of deep neural networks for the sole purpose of resolving this issue. In addition, pre-trained deep neural networks are utilized in the research process for the purpose of facial recognition and fine-tuning for accurate outcomes. The purpose of this study was to offer a method for estimating human ages from the frontal view of the face in a manner that is as accurate as possible and takes

... Show More
Scopus (12)
Scopus
Publication Date
Sat Oct 01 2022
Journal Name
Baghdad Science Journal
COVID-19 Diagnosis System using SimpNet Deep Model
...Show More Authors

After the outbreak of COVID-19, immediately it converted from epidemic to pandemic. Radiologic images of CT and X-ray have been widely used to detect COVID-19 disease through observing infrahilar opacity in the lungs. Deep learning has gained popularity in diagnosing many health diseases including COVID-19 and its rapid spreading necessitates the adoption of deep learning in identifying COVID-19 cases. In this study, a deep learning model, based on some principles has been proposed for automatic detection of COVID-19 from X-ray images. The SimpNet architecture has been adopted in our study and trained with X-ray images. The model was evaluated on both binary (COVID-19 and No-findings) classification and multi-class (COVID-19, No-findings

... Show More
View Publication Preview PDF
Scopus (8)
Scopus Clarivate Crossref
Publication Date
Mon Jun 01 2020
Journal Name
Journal Of Engineering
Arabic Sentiment Analysis (ASA) Using Deep Learning Approach
...Show More Authors

Sentiment analysis is one of the major fields in natural language processing whose main task is to extract sentiments, opinions, attitudes, and emotions from a subjective text. And for its importance in decision making and in people's trust with reviews on web sites, there are many academic researches to address sentiment analysis problems. Deep Learning (DL) is a powerful Machine Learning (ML) technique that has emerged with its ability of feature representation and differentiating data, leading to state-of-the-art prediction results. In recent years, DL has been widely used in sentiment analysis, however, there is scarce in its implementation in the Arabic language field. Most of the previous researches address other l

... Show More
View Publication Preview PDF
Crossref (24)
Crossref