The purpose of this paper is to model and forecast the white oil during the period (2012-2019) using volatility GARCH-class. After showing that squared returns of white oil have a significant long memory in the volatility, the return series based on fractional GARCH models are estimated and forecasted for the mean and volatility by quasi maximum likelihood QML as a traditional method. While the competition includes machine learning approaches using Support Vector Regression (SVR). Results showed that the best appropriate model among many other models to forecast the volatility, depending on the lowest value of Akaike information criterion and Schwartz information criterion, also the parameters must be significant. In addition, the residuals don’t have the serial correlation and ARCH effect, as well as these models, should have a higher value of log-likelihood and SVR-FIGARCH models managed to outperform FIGARCH models with normal and student’s t distributions. The SVR-FIGARCH model exhibited statistical significance and improved accuracy obtained with the SVM technique. Finally, we evaluate the forecasting performance of the various volatility models, and then we choose the best fitting model to forecast the volatility for each series, depending on three forecasting accuracy measures RMSE, MAE, and MAPE.
Measuring the efficiency of postgraduate and undergraduate programs is one of the essential elements in educational process. In this study, colleges of Baghdad University and data for the academic year (2011-2012) have been chosen to measure the relative efficiencies of postgraduate and undergraduate programs in terms of their inputs and outputs. A relevant method to conduct the analysis of this data is Data Envelopment Analysis (DEA). The effect of academic staff to the number of enrolled and alumni students to the postgraduate and undergraduate programs are the main focus of the study.
In this work Different weight of pure Zinc powder suspended particles in 4ml base engine Oil were used.
Intensity of Kα Line was measured for the suspended particles ,also for mixture which consist from Zinc particle blended with Engine base Oil. Calibration Curve was drawn between Ikα line Intensity and Zinc concentration at different operation condition. The Lower Limit detection (LLD) and Sensitivity (m) of Spectrometer were determined for different Zinc Concentration (Wt%). The results of LLD and m for Samples were analyzed at Operation Condition of 30KV,17mA is best from Samples were analyzed at Operation Condition of 25KV,15mA
Carbonate matrix stimulation technology has progressed tremendously in the last decade through creative laboratory research and novel fluid advancements. Still, existing methods for optimizing the stimulation of wells in vast carbonate reservoirs are inadequate. Consequently, oil and gas wells are stimulated routinely to expand production and maximize recovery. Matrix acidizing is extensively used because of its low cost and ability to restore the original productivity of damaged wells and provide additional production capacity. The Ahdeb oil field lacks studies in matrix acidizing; therefore, this work provided new information on limestone acidizing in the Mishrif reservoir. Moreover, several reports have been issued on the difficulties en
... Show MoreThis research was aimed to evaluate activity of Rosemary volatile oil and Nisin A in vivo and on B. cereus isolated from some canned meat products in vitro. The results showed that the activity of Rosemary volatile oil (2000 µg/ml) and Nisin A (350 µg\ml) attained to 27 and 19 mm inhibitory zone diameter respectively in well diffusion method. The viable plate count from samples of canned meat treated with effective concentration of Rosemary volatile oil and Nisin A were examined. The samples with Rosemary volatile oil was not showed any CFU/g after 9 days of preservation while sample with Nisin A and control observed 49 and 45 CFU/g respectively. In vivo experiment on mice, two weeks after oral dose of Rosemary volatile oil (2000
... Show MoreMultiple eliminations (de-multiple) are one of seismic processing steps to remove their effects and delineate the correct primary refractors. Using normal move out to flatten primaries is the way to eliminate multiples through transforming these data to frequency-wavenumber domain. The flatten primaries are aligned with zero axis of the frequency-wavenumber domain and any other reflection types (multiples and random noise) are distributed elsewhere. Dip-filter is applied to pass the aligned data and reject others will separate primaries from multiple after transforming the data back from frequency-wavenumber domain to time-distance domain. For that, a suggested name for this technique as normal move out- frequency-wavenumber domain
... Show MoreWithin the framework of big data, energy issues are highly significant. Despite the significance of energy, theoretical studies focusing primarily on the issue of energy within big data analytics in relation to computational intelligent algorithms are scarce. The purpose of this study is to explore the theoretical aspects of energy issues in big data analytics in relation to computational intelligent algorithms since this is critical in exploring the emperica aspects of big data. In this chapter, we present a theoretical study of energy issues related to applications of computational intelligent algorithms in big data analytics. This work highlights that big data analytics using computational intelligent algorithms generates a very high amo
... Show More