Listeria spp. is one of the abortion causative agents in animals, especially in ruminants. This work aimed to detect Listeria spp. in milk and aborted fetus cows in Iraq. A total of 50 organ samples from aborted cow fetuses, including (brain, liver, and spleen), and 50 milk samples from the same aborted cows were collected from Baghdad farms, Iraq from (October 2023- March 2024). The bacteria were identified by conventional culture methods, biochemical tests, and the VITEK2 compact system, followed by molecular confirmation. The antimicrobial resistance pattern assay was performed using the disc diffusion method against eight antibiotic agents, and the L.monocytogenes virulence genes involving prfA,actA, and hylA genes were detected using the PCR. The results revealed that only L. monocytogenes was detected at 2/50(4%) from aborted fetuses isolated from the brain and liver, while not in milk samples. The L.monocytogenes showed 100% resistance against erythromycin, ampicillin, cotrimoxazole, chloramphenicol, vancomycin, and tetracycline. At the same time, all the isolates had a high MDR and MAR (Multiple Antibiotic Resistance) index. This study concluded that L.monocytogenes is one of the abortion causative agents in cattle in Iraq, and the high antibiotic resistance of Listeria leads to economic loss and a possible risk to humans.
Background :The cotton factories have difference steps, spinning and weaving are van important parts of the factories. Cotton industry workers are exposed to various hazards in the different departments of textile factories. The major health problems associated with cotton dust are respiratory problems. Cotton workers display an excess of lung function abnormalities when compared to a community control population.
Aim of Study: This study assessed the effect of exposure to cotton dust in spinning and weaving workers on the lung function in Iraq, by measuring Forced Vital Capacity (FVC),Forced Expiratory Volume in the first second(FEV1), FEV1 ∕ FVC Ratio, and Forced Expiratory Flow 50%(FEF50%),with varying degree of reduction in lung
In study of effective bioactive compounds, we have synthesized the Co((ІІ), Mn(ІІ), Fe(ІІ), Cu(ІІ), Ni(ІІ), and Zn(ІІ) complexes of the Schiff base derived from trimethoprim and2'-amino-4-chlorobenzophenone and characterized by spectroscopic (NMR, IR, Mass, UV–vis,), analytical, TGA studies and magnetic data .The solution electronic spectral study suggests the stoichiometry of the synthesized complexes and Elemental analysis detected the square planer and octahedral geometry of the compounds. The prepared metal complexes presented promoted efficiency versus the screened bacterial (Escherichia Coli and Staphylococcus aureus) antibacterial efficacy against (Staphylococcus aureus, Salmonella spp., E. coli, Vibrio spp., Pseud
... Show MoreDigital image manipulation has become increasingly prevalent due to the widespread availability of sophisticated image editing tools. In copy-move forgery, a portion of an image is copied and pasted into another area within the same image. The proposed methodology begins with extracting the image's Local Binary Pattern (LBP) algorithm features. Two main statistical functions, Stander Deviation (STD) and Angler Second Moment (ASM), are computed for each LBP feature, capturing additional statistical information about the local textures. Next, a multi-level LBP feature selection is applied to select the most relevant features. This process involves performing LBP computation at multiple scales or levels, capturing textures at different
... Show MoreThe lethality of inorganic arsenic (As) and the threat it poses have made the development of efficient As detection systems a vital necessity. This research work demonstrates a sensing layer made of hydrous ferric oxide (Fe2H2O4) to detect As(III) and As(V) ions in a surface plasmon resonance system. The sensor conceptualizes on the strength of Fe2H2O4 to absorb As ions and the interaction of plasmon resonance towards the changes occurring on the sensing layer. Detection sensitivity values for As(III) and As(V) were 1.083 °·ppb−1 and 0.922 °·ppb
Adverse drug reactions (ADR) are important information for verifying the view of the patient on a particular drug. Regular user comments and reviews have been considered during the data collection process to extract ADR mentions, when the user reported a side effect after taking a specific medication. In the literature, most researchers focused on machine learning techniques to detect ADR. These methods train the classification model using annotated medical review data. Yet, there are still many challenging issues that face ADR extraction, especially the accuracy of detection. The main aim of this study is to propose LSA with ANN classifiers for ADR detection. The findings show the effectiveness of utilizing LSA with ANN in extracting AD
... Show MoreGlobal Navigation Satellite Systems (GNSS) have become an integral part of wide range of applications. One of these applications of GNSS is implementation of the cellular phone to locate the position of users and this technology has been employed in social media applications. Moreover, GNSS have been effectively employed in transportation, GIS, mobile satellite communications, and etc. On the other hand, the geomatics sciences use the GNSS for many practical and scientific applications such as surveying and mapping and monitoring, etc.
In this study, the GNSS raw data of ISER CORS, which is located in the North of Iraq, are processed and analyzed to build up coordinate time series for the purpose of detection the
... Show MoreOne of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services th
... Show More