Preferred Language
Articles
/
pxflgJEBVTCNdQwCDpWz
Analytical solutions via coupled Elzaki adomian decomposition method for some applications

An efficient combination of Adomian Decomposition iterative technique coupled Elzaki transformation (ETADM) for solving Telegraph equation and Riccati non-linear differential equation (RNDE) is introduced in a novel way to get an accurate analytical solution. An elegant combination of the Elzaki transform, the series expansion method, and the Adomian polynomial. The suggested method will convert differential equations into iterative algebraic equations, thus reducing processing and analytical work. The technique solves the problem of calculating the Adomian polynomials. The method’s efficiency was investigated using some numerical instances, and the findings demonstrate that it is easier to use than many other numerical procedures. It has also been established that (ETADM) is a trustworthy technique for solving differential equations. Using the Mathematica 13.3 programme, the graphs of the approximate solutions are presented.

Scopus
Publication Date
Sun Jul 30 2023
Journal Name
Iraqi Journal Of Science
A Numerical Study for Solving the Systems of Fuzzy Fredholm Integral Equations of the Second Kind Using the Adomian Decomposition Method

     In this paper, the Adomian decomposition method (ADM) is successfully applied to find the approximate solutions for the system of fuzzy Fredholm integral equations (SFFIEs) and we also study the convergence of the technique. A consistent way to reduce the size of the computation is given to reach the exact solution. One of the best methods adopted to determine the behavior of the approximate solutions. Finally, the problems that have been addressed confirm the validity of the method  applied in this research using a comparison by combining numerical methods such as the Trapezoidal rule and Simpson rule with ADM.

Scopus Crossref
View Publication Preview PDF
Publication Date
Mon Aug 01 2022
Journal Name
Baghdad Science Journal
An Analytic Solution for Riccati Matrix Delay Differential Equation using Coupled Homotopy-Adomian Approach

An efficient modification and a novel technique combining the homotopy concept with  Adomian decomposition method (ADM) to obtain an accurate analytical solution for Riccati matrix delay differential equation (RMDDE) is introduced  in this paper  . Both methods are very efficient and effective. The whole integral part of ADM is used instead of the integral part of homotopy technique. The major feature in current technique gives us a large convergence region of iterative approximate solutions .The results acquired by this technique give better approximations for a larger region as well as previously. Finally, the results conducted via suggesting an efficient and easy technique, and may be addressed to other non-linear problems.

Scopus (4)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Sun Jul 01 2018
Journal Name
Computers & Mathematics With Applications
Crossref (19)
Crossref
View Publication
Publication Date
Mon Sep 25 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Algorithm to Solve Linear Volterra Fractional Integro-Differential Equation via Elzaki Transform

       In this work, Elzaki transform (ET) introduced by Tarig Elzaki is applied to solve linear Volterra fractional integro-differential equations (LVFIDE). The fractional derivative is considered in the Riemman-Liouville sense. The procedure is based on the application of (ET) to (LVFIDE) and using properties of (ET) and its inverse. Finally, some examples are solved to show that this is computationally efficient and accurate.

View Publication Preview PDF
Publication Date
Sun Sep 24 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Algorithm to Solve Linear Volterra Fractional Integro-Differential Equation via Elzaki Transform

In this work, Elzaki transform (ET) introduced by Tarig Elzaki is applied to solve linear Volterra fractional integro-differential equations (LVFIDE). The fractional derivative is considered in the Riemman-Liouville sense. The procedure is based on the application of (ET) to (LVFIDE) and using properties of (ET) and its inverse. Finally, some examples are solved to show that this is computationally efficient and accurate.

View Publication Preview PDF
Publication Date
Tue Nov 30 2021
Journal Name
Iraqi Journal Of Science
Series Solutions of Delay Integral Equations via a Modified Approach of Homotopy Analysis Method

In this paper, the series solutions of a non-linear delay integral equations are considered by a modified approach of homotopy analysis method (MAHAM). We split the function   into infinite sums. The outcomes of the illustrated examples are included to confirm the accuracy and efficiency of the MAHAM. The exact solution can be obtained using special values of the convergence parameter.

Scopus (2)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
Lecture Notes In Electrical Engineering
Scopus Crossref
View Publication
Publication Date
Thu Sep 30 2021
Journal Name
Iraqi Journal Of Science
Efficient Modification of the Decomposition Method for Solving a System of PDEs

     This paper presents an analysis solution for systems of partial differential equations using a new modification of the decomposition method to overcome the computational difficulties. Convergence of series solution was discussed with two illustrated examples, and the method showed a high-precision, being a fast approach to solve the non-linear system of PDEs with initial conditions. There is no need to convert the nonlinear terms into the linear ones due to the Adomian polynomials. The method does not require any discretization or assumption for a small parameter to be present in the problem. The steps of the suggested method are easily implemented, with high accuracy and rapid convergence to the exact solution,

... Show More
Scopus (7)
Crossref (3)
Scopus Crossref
View Publication Preview PDF
Publication Date
Wed Sep 01 2021
Journal Name
Baghdad Science Journal
On Comparison Study between Double Sumudu and Elzaki Linear Transforms Method for Solving Fractional Partial Differential Equations

        In this paper, double Sumudu and double Elzaki transforms methods are used to compute the numerical solutions for some types of fractional order partial differential equations with constant coefficients and explaining the efficiently of the method by illustrating some numerical examples that are computed by using  Mathcad 15.and graphic in Matlab R2015a.

Scopus (4)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Mon Dec 20 2021
Journal Name
Baghdad Science Journal
Numerical Analysis of Least-Squares Group Finite Element Method for Coupled Burgers' Problem

In this paper, a least squares group finite element method for solving coupled Burgers' problem in   2-D is presented. A fully discrete formulation of least squares finite element method is analyzed, the backward-Euler scheme for the time variable is considered, the discretization with respect to space variable is applied as biquadratic quadrangular elements with nine nodes for each element. The continuity, ellipticity, stability condition and error estimate of least squares group finite element method are proved.  The theoretical results  show that the error estimate of this method is . The numerical results are compared with the exact solution and other available literature when the convection-dominated case to illustrate the effic

... Show More
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
View Publication Preview PDF