Malicious software (malware) performs a malicious function that compromising a computer system’s security. Many methods have been developed to improve the security of the computer system resources, among them the use of firewall, encryption, and Intrusion Detection System (IDS). IDS can detect newly unrecognized attack attempt and raising an early alarm to inform the system about this suspicious intrusion attempt. This paper proposed a hybrid IDS for detection intrusion, especially malware, with considering network packet and host features. The hybrid IDS designed using Data Mining (DM) classification methods that for its ability to detect new, previously unseen intrusions accurately and automatically. It uses both anomaly and misuse detection techniques using two DM classifiers (Interactive Dichotomizer 3 (ID3) classifier and Naïve Bayesian (NB) Classifier) to verify the validity of the proposed system in term of accuracy rate. A proposed HybD dataset used in training and testing the hybrid IDS. Feature selection is used to consider the intrinsic features in classification decision, this accomplished by using three different measures: Association rules (AR) method, ReliefF measure, and Gain Ratio (GR) measure. NB classifier with AR method given the most accurate classification results (99%) with false positive (FP) rate (0%) and false negative (FN) rate (1%).
This study aimed at investigating the effect of using computer in
Efficiency of Training Programme of Science Teachers in Ajloun District in
Jordan.
1- What is the effect of using computer in program for the two groups
2- ( the experimental and control group ) .
3- Are there any statistics different in the effect of using computer
program for the two groups ?
4- Are there any statistics (comparison ) or different of the effect of the
effect of using computer program refer to the sex (male or female )?
The community of the study consisted of all the science student in
educational directorate of Ajloun district for the academic year 2009 –
2010, they are (120) ( male and female) . The sample of the study<
Missing data is one of the problems that may occur in regression models. This problem is usually handled by deletion mechanism available in statistical software. This method reduces statistical inference values because deletion affects sample size. In this paper, Expectation Maximization algorithm (EM), Multicycle-Expectation-Conditional Maximization algorithm (MC-ECM), Expectation-Conditional Maximization Either (ECME), and Recurrent Neural Networks (RNN) are used to estimate multiple regression models when explanatory variables have some missing values. Experimental dataset were generated using Visual Basic programming language with missing values of explanatory variables according to a missing mechanism at random general pattern and s
... Show MoreMagnetic Resonance Imaging (MRI) is one of the most important diagnostic tool. There are many methods to segment the
tumor of human brain. One of these, the conventional method that uses pure image processing techniques that are not preferred because they need human interaction for accurate segmentation. But unsupervised methods do not require any human interference and can segment the brain with high precision. In this project, the unsupervised classification methods have been used in order to detect the tumor disease from MRI images. These metho
... Show MoreIn this paper two main stages for image classification has been presented. Training stage consists of collecting images of interest, and apply BOVW on these images (features extraction and description using SIFT, and vocabulary generation), while testing stage classifies a new unlabeled image using nearest neighbor classification method for features descriptor. Supervised bag of visual words gives good result that are present clearly in the experimental part where unlabeled images are classified although small number of images are used in the training process.
Gender classification is a critical task in computer vision. This task holds substantial importance in various domains, including surveillance, marketing, and human-computer interaction. In this work, the face gender classification model proposed consists of three main phases: the first phase involves applying the Viola-Jones algorithm to detect facial images, which includes four steps: 1) Haar-like features, 2) Integral Image, 3) Adaboost Learning, and 4) Cascade Classifier. In the second phase, four pre-processing operations are employed, namely cropping, resizing, converting the image from(RGB) Color Space to (LAB) color space, and enhancing the images using (HE, CLAHE). The final phase involves utilizing Transfer lea
... Show MoreBecause of the rapid development and use of the Internet as a communication media emerged to need a high level of security during data transmission and one of these ways is "Steganography". This paper reviews the Least Signification Bit steganography used for embedding text file with related image in gray-scale image. As well as we discuss the bit plane which is divided into eight different images when combination them we get the actual image. The findings of the research was the stego-image is indistinguishable to the naked eye from the original cover image when the value of bit less than four Thus we get to the goal is to cover up the existence of a connection or hidden data. The Peak to Signal Noise Ratio(PSNR) and Mean Square Error (
... Show MoreThe key objective of the study is to understand the best processes that are currently used in managing talent in Australian higher education (AHE) and design a quantitative measurement of talent management processes (TMPs) for the higher education (HE) sector.
The three qualitative multi-method studies that are commonly used in empirical studies, namely, brainstorming, focus group discussions and semi-structured individual interviews were considered. Twenty
The research aims to build a list of digital citizenship axes and standards and indicators emanating from them, which should be included in the content of the computer textbook scheduled for second grade intermediate students in Iraq, and the analysis of the above mentioned book according to the same list using the descriptive analytical method ((method of content analysis)). The research community and its sample consisted of the content of the computer textbook scheduled for the second year intermediate students for the academic year 2018-2019, and the research tool was built in its initial form after reference to a set of specialized literature and previous studies that dealt with topics related to digital citizenship, and the authenticit
... Show MoreThe study aims to analyze computer textbooks content for preparatory stage according to the logical thinking. The researcher followed the descriptive analytical research approach (content analysis), and adopted an explicit idea during the analysis process. One of the content analysis tools which was designed based on mental processes employed during logical thinking has utilized to figure out the study results. The findings revealed that logical thinking skills formed (52%) in fourth preparatory textbook and (47%) in fifth preparatory textbook.