Malicious software (malware) performs a malicious function that compromising a computer system’s security. Many methods have been developed to improve the security of the computer system resources, among them the use of firewall, encryption, and Intrusion Detection System (IDS). IDS can detect newly unrecognized attack attempt and raising an early alarm to inform the system about this suspicious intrusion attempt. This paper proposed a hybrid IDS for detection intrusion, especially malware, with considering network packet and host features. The hybrid IDS designed using Data Mining (DM) classification methods that for its ability to detect new, previously unseen intrusions accurately and automatically. It uses both anomaly and misuse detection techniques using two DM classifiers (Interactive Dichotomizer 3 (ID3) classifier and Naïve Bayesian (NB) Classifier) to verify the validity of the proposed system in term of accuracy rate. A proposed HybD dataset used in training and testing the hybrid IDS. Feature selection is used to consider the intrinsic features in classification decision, this accomplished by using three different measures: Association rules (AR) method, ReliefF measure, and Gain Ratio (GR) measure. NB classifier with AR method given the most accurate classification results (99%) with false positive (FP) rate (0%) and false negative (FN) rate (1%).
Cryptography algorithms play a critical role in information technology against various attacks witnessed in the digital era. Many studies and algorithms are done to achieve security issues for information systems. The high complexity of computational operations characterizes the traditional cryptography algorithms. On the other hand, lightweight algorithms are the way to solve most of the security issues that encounter applying traditional cryptography in constrained devices. However, a symmetric cipher is widely applied for ensuring the security of data communication in constraint devices. In this study, we proposed a hybrid algorithm based on two cryptography algorithms PRESENT and Salsa20. Also, a 2D logistic map of a chaotic system is a
... Show MoreEnhancing quality image fusion was proposed using new algorithms in auto-focus image fusion. The first algorithm is based on determining the standard deviation to combine two images. The second algorithm concentrates on the contrast at edge points and correlation method as the criteria parameter for the resulted image quality. This algorithm considers three blocks with different sizes at the homogenous region and moves it 10 pixels within the same homogenous region. These blocks examine the statistical properties of the block and decide automatically the next step. The resulted combined image is better in the contras
... Show MoreGenetic algorithms (GA) are a helpful instrument for planning and controlling the activities of a project. It is based on the technique of survival of the fittest and natural selection. GA has been used in different sectors of construction and building however that is rarely documented. This research aimed to examine the utilisation of genetic algorithms in construction project management. For this purpose, the research focused on the benefits and challenges of genetic algorithms, and the extent to which genetic algorithms is utilised in construction project management. Results showed that GA provides an ability of generating near optimal solutions which can be adopted to reduce complexity in project management and resolve difficult problem
... Show MoreThis paper proposes a new approach, of Clustering Ultrasound images using the Hybrid Filter (CUHF) to determine the gender of the fetus in the early stages. The possible advantage of CUHF, a better result can be achieved when fuzzy c-mean FCM returns incorrect clusters. The proposed approach is conducted in two steps. Firstly, a preprocessing step to decrease the noise presented in ultrasound images by applying the filters: Local Binary Pattern (LBP), median, median and discrete wavelet (DWT),(median, DWT & LBP) and (median & Laplacian) ML. Secondly, implementing Fuzzy C-Mean (FCM) for clustering the resulted images from the first step. Amongst those filters, Median & Laplace has recorded a better accuracy. Our experimental evaluation on re
... Show MoreThis paper proposes a new approach, of Clustering Ultrasound images using the Hybrid Filter (CUHF) to determine the gender of the fetus in the early stages. The possible advantage of CUHF, a better result can be achieved when fuzzy c-mean FCM returns incorrect clusters. The proposed approach is conducted in two steps. Firstly, a preprocessing step to decrease the noise presented in ultrasound images by applying the filters: Local Binary Pattern (LBP), median, median and discrete wavelet (DWT), (median, DWT & LBP) and (median & Laplacian) ML. Secondly, implementing Fuzzy C-Mean (FCM) for clustering the resulted images from the first step. Amongst those filters, Median & Lap
The aim of this paper is to shed the light on the concepts of agency theory by measuring one of the problems that arise from it, which is represented by earnings management (EM) practices. The research problem is demonstrated by the failure of some Iraqi banks and their subsequent placement under the supervision of the Central Bank of Iraq, which was attributed, in part, to the inadequacy of the agency model in protecting stakeholders in shareholding institutions, as well as EM, pushed professional institutions to adopt the corporate governance model as a method to regulate the problem of accounting information asymmetry between the parties to the agency. We are using the Beneish M-score model and the financial analysis equations in
... Show MoreThe field of Optical Character Recognition (OCR) is the process of converting an image of text into a machine-readable text format. The classification of Arabic manuscripts in general is part of this field. In recent years, the processing of Arabian image databases by deep learning architectures has experienced a remarkable development. However, this remains insufficient to satisfy the enormous wealth of Arabic manuscripts. In this research, a deep learning architecture is used to address the issue of classifying Arabic letters written by hand. The method based on a convolutional neural network (CNN) architecture as a self-extractor and classifier. Considering the nature of the dataset images (binary images), the contours of the alphabet
... Show MoreThe increase of the scenographic designer role on account of the character of the director in the Iraqi theater constituted a clear phenomenon that has been manifested in many shows, which necessitated a stance on the nature of this relation and delimiting the work space for each one of them inside the theater show. The research focuses on determining the work relation between the directorial vision and the scenographic proposal in the Iraq theater show. The research is divided into four chapters, the first one addressed the methodological framework, where the research problem was stated in the following question (has the scenographic designer been able through his scenographic proposal to remove the director from his position being the
... Show MoreUncompressed form of the digital images are needed a very large storage capacity amount, as a consequence requires large communication bandwidth for data transmission over the network. Image compression techniques not only minimize the image storage space but also preserve the quality of image. This paper reveal image compression technique which uses distinct image coding scheme based on wavelet transform that combined effective types of compression algorithms for further compression. EZW and SPIHT algorithms are types of significant compression techniques that obtainable for lossy image compression algorithms. The EZW coding is a worthwhile and simple efficient algorithm. SPIHT is an most powerful technique that utilize for image
... Show More