Catalytic removal of the S-content from thiophene is a central step in efforts aiming to reduce the environmental burdens of transportation fuels. In this contribution, we investigate the hydrodesulfurization (HDS) mechanisms of thiophene (C4H4S) over γ-Mo2N catalyst by means of density functional theory (DFT) calculations. The thiophene molecule preferentially adsorbs in a flat mode over 3-fold fcc nitrogen hollow sites. The HDS mechanism may potentially proceed either unimolecularly (direct desulfurization) or via H-assisted reactions (hydrogenation). Due to a sizable activation barrier required for the first Csingle bondS bond scission of 54.6 kcal/mol, we predict that the direct desulfurization to contribute rather very insignificantly in the HDS mechanism. Transfer of adsorbed hydrogen atoms on the γ-Mo2N surface to the thiophene ring substantially reduces activation barrier required in the Csingle bondS bond scission to only 24.1 kcal/mol in a process that affords an adsorbed C4H6* species and an S atom. Further hydrogenation of the unsaturated C4H6* produces 2-butene. Kinetics and thermodynamics attributes dictate the occurrence of partial rather than full hydrogenation of C4H6*. Calculated rate constants for all individual steps could be utilized to construct a robust kinetic model for the overall HDS process. Estimated conversion values of thiophene predict 50–70% consumption of thiophene at 700 K and low values of gas hourly space velocities. Reaction routes and kinetic parameters provided herein are useful to design stand-alone γ-Mo2N-based catalysts for applications entailing partial hydrogenation and hydrodesulfurization of severely contaminated S-fuels.
Several schottky diodes were fabricated from polyaniline/ Carbon nanotube (single and multiwalled) composites. These composites were synthesized with different concentration and two carbon nanotubes types, Single and Multi-Walled Carbon Nanotubes (SWCNT & MWCNT). Aluminum and silver paste were chosen as schottky and ohmic contact respectively. physical and electrical were used to studied these composite by using Atomic Force Microscopy (AFM) and electrical measurements. The Root Mean Square RMS surface roughness of the composite samples was found to be around 4nm. The currentvoltage characteristic were measurements for all samples in the bias range ±15V at room temperature. The results shows the increasing in carbon nanotubes concentration
... Show MoreThe objective of the study was to develop microneedle (MN) patch, with suitable properties to ensure the delivery of a therapeutic level of lornoxicam (LXM) in a period suitable to replace parenteral administration in patients, especially those who fear needles. The used polymers were cold water-soluble polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP) of low molecular weight with PEG 400 as plasticizer and Tween 80 (to enhance the release) using micro molding technique. Patches were studied for needle morphology, drug content, axial fracture force measurement and drug release while the optimized formulas were further subjected to pH measurement, folding endurance, ex vivo permeation study, histopathology study, stability study and
... Show MoreThis study investigates the influence of five nanomaterials nano-alumina (NA), nano-silica (NS), nano-titanium (NT), nano-zinc oxide (NZ), and carbon nanotubes (CNT)on enhancing the fatigue resistance of asphalt binders. NA, NS, and NT were incorporated at dosages of 2%, 4%, 6%, 8%, and 10%, while NZ and CNT were added at 1%, 2%, 3%, 4%, and 5%. A series of physical, rheological, and performance-based tests were conducted, including penetration, softening point, ductility, and rotational viscosity. Based on the outcomes of the overall desirability evaluation, the first three dosages of each nanomaterial were selected for further testing due to their superior workability and binder flexibility. Subsequent investigations included the high-tem
... Show MoreAbstract:
Borago officinalis is highly interesting amongst nutritional and medical source relate to its high composition of some useful phytochemical compound. It is great plants with bright blue star-shaped flowers present in most world regions and usually known as borage. The Borago phytochemical analysis showed the presence of alkaloids, tannins, flavonoids, phenolic acids, essential oil, vitamins and others. Borage is cultivated all over the world and used in traditional medicine as a demulcent, diuretic, emollient, tonic, expectorant, for the treatment of coughs, inflammation and swelling, and other diseases. In herbal medicine, Borage seed oil (BSO) has been utilized for many progressive illnesse
... Show MoreThe study focused on examining the behavior of six concrete beams that were reinforced with glass fiber-reinforced polymer (GFRP) bars to evaluate their performance in terms of their load-carrying capacity, deflection, and other mechanical properties. The experimental investigation would provide insights into the feasibility and effectiveness of GFRP bars as an alternative to traditional reinforcement materials like steel bars in concrete structures. The GFRP bars were used in both the longitudinal and transverse directions. Each beam in the study shared the following specifications: an overall length of 2,400 mm, a clear span of 2,100 mm, and a rectangular cross-section measuring
This study aims to develop a recommendation engine methodology to enhance the model’s effectiveness and efficiency. The proposed model is commonly used to assign or propose a limited number of developers with the required skills and expertise to address and resolve a bug report. Managing collections within bug repositories is the responsibility of software engineers in addressing specific defects. Identifying the optimal allocation of personnel to activities is challenging when dealing with software defects, which necessitates a substantial workforce of developers. Analyzing new scientific methodologies to enhance comprehension of the results is the purpose of this analysis. Additionally, developer priorities were discussed, especially th
... Show MoreThis study analyzes the features of historical and modern mosques in Jordan compared to that of Amman. The architecture of the Jordanian mosques reflects the images of great ancient empires and kingdoms of Europe and the Middle East. This has happened due to the geographical position of the country. From the studies of historians and archaeologists, comparative analysis of planning solutions, the use of plastics and decor of the facades of mosques, and the literature on the construction methods of the mosques allow us to conclude that age-old traditions have been preserved through the establishment of mosques in both the countries. Besides, the emergence of new features in constructing mosques has been observed. We find the influence of
... Show More