Tight reservoirs have attracted the interest of the oil industry in recent years according to its significant impact on the global oil product. Several challenges are present when producing from these reservoirs due to its low to extra low permeability and very narrow pore throat radius. Development strategy selection for these reservoirs such as horizontal well placement, hydraulic fracture design, well completion, and smart production program, wellbore stability all need accurate characterizations of geomechanical parameters for these reservoirs. Geomechanical properties, including uniaxial compressive strength (UCS), static Young’s modulus (Es), and Poisson’s ratio (υs), were measured experimentally using both static and dynamic methods. Measured mechanical parameters on cores are used to correct well logs derived mechanical earth model (MEM). The analysis of measured mechanical properties of samples was conducted using the knowledge of cores mineralogy which was done in this study by the X-Ray Diffraction (XRD) test in addition to rock texture which was obtained using scanning electronic microscope (SEM). The study of SEM and TS of the samples explain the presence of vugges in some samples that cause its initial high porosity and consequently low UCS, also it causes lower compressional and shear velocity at these samples as compared to others. The minerals contained in each sample give a descriptive analysis of the difference of the values of both static and dynamic measured mechanical properties such as ultrasonic pulse traveling time, elastic properties, and UCS; this was explained through XRD results.
This paper presents the thermophysical properties of zinc oxide nanofluid that have been measured for experimental investigation. The main contribution of this study is to define the heat transfer characteristics of nanofluids. The measuring of these properties was carried out within a range of temperatures from 25 °C to 45 °C, volume fraction from 1 to 2 %, and the average nanoparticle diameter size is 25 nm, and the base fluid is water. The thermophysical properties, including viscosity and thermal conductivity, were measured by using Brookfield rotational Viscometer and Thermal Properties Analyzer, respectively. The result indicates that the thermophysical properties of zinc oxide nanofluid increasing with nanoparticle volume f
... Show MoreThe zeolite's textural properties have a significant effect on zeolite's effectiveness in the different industrial processes. This research aimed to study the textual properties of the NaX and FeX zeolites using the nitrogen adsorption-desorption technique at a constant low temperature. According to the International Union of Pure and Applied Chemistry, the adsorption-desorption isotherm showed that the studied materials were mixed kinds I/II isotherms and H3 type hysteresis. The Brunauer-Emmett-Teller isotherm was the best model to describe the nitrogen adsorption-desorption better than the Langmuir and Freundlich isotherms. The obtained adsorption capacity and Brunauer-Emmett-Teller surface area values for NaX were greater than FeX. Ac
... Show MoreThe research aims at the possibility of measuring the technical and scale efficiency (SE) of the departments of the College of Administration and Economics at the University of Baghdad for a period lasting 8 years, from the academic year 2013-2014 to 2018-2019 using the method of Applied Data Analysis with an input and output orientation to maintain the distinguished competitive position and try to identify weaknesses in performance and address them. Nevertheless, the research problem lies in diagnosing the most acceptable specializations in the labor market and determining the reasons for students’ reluctance to enter some departments. Furthermore, the (Win4DEAp) program was used to measure technical and scale efficiency (SE) and rely on
... Show MoreIn the present work, We study the structural and optical properties of (ZnO), which are prepared by thermal evaporation technique, where deposit (Zn) on glass substrates at different thicknesses (150,250,350)nm, deposited on glass substrate at R.T. with rate (5 nm sec-1). And then we make oxidation for (Zn) films at temperature (500) and using the air for one hour, and last annealing samples at temperature (400,500) for one hour. The investigation of (XRD) indicates that the (ZnO) films are polycrystalline type of hexagonal with a preferred orientation along (002) to all samples and analysis reveals that the intensity of this orientation increases with the increase of the thickness and annealing temperature.  
... Show MoreIraqi oil crudes have some of the physical and chemical characteristics that distinguish it from other types of oil crudes in the world. Some of these features such us molecular composition, rheological, viscosity and emulsions are studied carefully by researchers. In this work, a comparative study of the linear and the non-linear optical properties for typical heavy and light crude oils of Iraqi origin was studied utilizing Z-scan technique. The He -Ne laser of wavelength 632.8 nm had been used for this purpose. These samples were collected from Basra and Kut oil fields. The values of the non-linear refractive index (n2), non-linear absorption coefficient (β), and third-order electrical susceptibility (χ3) were e
... Show MoreDifferent additives are used in drilling fluids when the demanded properties cannot be gotten with clays. Drilling muds needs several additives and materials to give good characteristics. There are local alternatives more suitable for enhancing the rheology and filtration of drilling fluids. An experimental work had been conducted to assess the suitability of using potato starch to enhance rheological properties and filtration in drilling mud. This study investigated the potato starch as a viscosifier and fluid losses agent in drilling fluid. Results from this study proved that rheological properties of potato starch mud increased when pH of drilling fluid is increased. Potato starch could be used to enhance gel strength at low pH
... Show MoreThe calculations of the shell model, based on the large basis, were carried out for studying the nuclear 29-34Mg structure. Binding energy, single neutron separation energy, neutron shell gap, two neutron separation energy, and reduced transition probability, are explained with the consideration of the contributions of the high-energy configurations beyond the model space of sd-shell. The wave functions for these nuclei are used from the model of the shell with the use of the USDA 2-body effective interaction. The OBDM elements are computed with the use of NuShellX@MSU shell model code that utilizes the formalism of proton-neutron.