Cyber-attacks keep growing. Because of that, we need stronger ways to protect pictures. This paper talks about DGEN, a Dynamic Generative Encryption Network. It mixes Generative Adversarial Networks with a key system that can change with context. The method may potentially mean it can adjust itself when new threats appear, instead of a fixed lock like AES. It tries to block brute‑force, statistical tricks, or quantum attacks. The design adds randomness, uses learning, and makes keys that depend on each image. That should give very good security, some flexibility, and keep compute cost low. Tests still ran on several public image sets. Results show DGEN beats AES, chaos tricks, and other GAN ideas. Entropy reached 7.99 bits per pixel, correlation dropped 0.002, and the avalanche effect was 95.4 percent. Encrypting a surveillance frame took 7.5 ms, while the picture quality stayed high, with PSNR 39.7 dB and SSIM 99.2. These numbers suggest the tool can still work in real time and scale up significantly. The study also looks at how DGEN could fit with quantum computers and federated learning, hinting it might be a very big step forward for safe image handling.
A simulation study of using 2D tomography to reconstruction a 3D object is presented. The 2D Radon transform is used to create a 2D projection for each slice of the 3D object at different heights. The 2D back-projection and the Fourier slice theorem methods are used to reconstruction each 2D projection slice of the 3D object. The results showed the ability of the Fourier slice theorem method to reconstruct the general shape of the body with its internal structure, unlike the 2D Radon method, which was able to reconstruct the general shape of the body only because of the blurring artefact, Beside that the Fourier slice theorem could not remove all blurring artefact, therefore, this research, suggested the threshold technique to eliminate the
... Show MoreA new Differential Evolution (ARDE) algorithm is introduced that automatically adapt a repository of DE strategies and parameters adaptation schemes of the mutation factor and the crossover rate to avoid the problems of stagnation and make DE responds to a wide range of function characteristics at different stages of the evolution. ARDE algorithm makes use of JADE strategy and the MDE_pBX parameters adaptive schemes as frameworks. Then a new adaptive procedure called adaptive repository (AR) has been developed to select the appropriate combinations of the JADE strategies and the parameter control schemes of the MDE_pBX to generate the next population based on their fitness values. Experimental results have been presented to confirm the reli
... Show MoreECG is an important tool for the primary diagnosis of heart diseases, which shows the electrophysiology of the heart. In our method, a single maternal abdominal ECG signal is taken as an input signal and the maternal P-QRS-T complexes of original signal is averaged and repeated and taken as a reference signal. LMS and RLS adaptive filters algorithms are applied. The results showed that the fetal ECGs have been successfully detected. The accuracy of Daisy database was up to 84% of LMS and 88% of RLS while PhysioNet was up to 98% and 96% for LMS and RLS respectively.
The regressor-based adaptive control is useful for controlling robotic systems with uncertain parameters but with known structure of robot dynamics. Unmodeled dynamics could lead to instability problems unless modification of control law is used. In addition, exact calculation of regressor for robots with more than 6 degrees of freedom is hard to be calculated, and the task could be more complex for robots. Whereas the adaptive approximation control is a powerful tool for controlling robotic systems with unmodeled dynamics. The local (partitioned) approximation-based adaptive control includes representation of the uncertain matrices and vectors in the robot model as finite combinations of basis functions. Update laws for the weighting matri
... Show MoreIn this paper, a new method of selection variables is presented to select some essential variables from large datasets. The new model is a modified version of the Elastic Net model. The modified Elastic Net variable selection model has been summarized in an algorithm. It is applied for Leukemia dataset that has 3051 variables (genes) and 72 samples. In reality, working with this kind of dataset is not accessible due to its large size. The modified model is compared to some standard variable selection methods. Perfect classification is achieved by applying the modified Elastic Net model because it has the best performance. All the calculations that have been done for this paper are in
Maintaining and breeding fish in a pond are a crucial task for a large fish breeder. The main issues for fish breeders are pond management such as the production of food for fishes and to maintain the pond water quality. The dynamic or technological system for breeders has been invented and becomes important to get maximum profit return for aquaponic breeders in maintaining fishes. This research presents a developed prototype of a dynamic fish feeder based on fish existence. The dynamic fish feeder is programmed to feed where sensors detected the fish's existence. A microcontroller board NodeMCU ESP8266 is programmed for the developed h
... Show MoreThis research aims at forecasting the public budget of Iraq (surplus or deficit) for 2017 & 2018 through using two methods to forecast. First: forecast budget surplus or deficit by using IMF estimations average oil price per barrel adopted in the public federal budget amounted to USD 44 in 2017 & USD 46 in 2018; Second: forecast budget surplus or deficit by using MOO actual average oil price in global markets amounted to USD 66 in 2018 through applying Dynamic Model & Static Model. Then analyze the models to reach the best one. The research concluded that those estimations of dynamic forecasting model of budget surplus or deficit for 2017 & 2018 gives good reliable results for future periods when using the a
... Show More