Preferred Language
Articles
/
phgRiZQBVTCNdQwC4Rxs
Nanostructured silicon trapping for single Escherichia coli bacteria detection
...Show More Authors

The detection for Single Escherichia Coli Bacteria has attracted great interest and in biology and physics applications. A nanostructured porous silicon (PS) is designed for rapid capture and detection of Escherichia coli bacteria inside the micropore. PS has attracted more attention due to its unique properties. Several works are concerning the properties of nanostructured porous silicon. In this study PS is fabricated by an electrochemical anodization process. The surface morphology of PS films has been studied by scanning electron microscope (SEM) and atomic force microscope (AFM). The structure of porous silicon was studied by energy-dispersive X-ray spectroscopy (EDX). Details of experimental methods and results are given and discussed. The values obtained were compared with the published data.

Scopus
Publication Date
Tue Apr 01 2025
Journal Name
Mesopotamian Journal Of Cybersecurity
The Impact of Feature Importance on Spoofing Attack Detection in IoT Environment
...Show More Authors

The Internet of Things (IoT) is an expanding domain that can revolutionize different industries. Nevertheless, security is among the multiple challenges that it encounters. A major threat in the IoT environment is spoofing attacks, a type of cyber threat in which malicious actors masquerade as legitimate entities. This research aims to develop an effective technique for detecting spoofing attacks for IoT security by utilizing feature-importance methods. The suggested methodology involves three stages: preprocessing, selection of important features, and classification. The feature importance determines the most significant characteristics that play a role in detecting spoofing attacks. This is achieved via two techniques: decision tr

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sun Jan 01 2023
Journal Name
مجلة الأطروحة العلمية المحكمة-العلوم الصرفة والتطبيقية
Detection of Lead (Pb) and Cadmium (Cd) Concentrations in Some Indomie Samples
...Show More Authors

Publication Date
Sat Apr 01 2023
Journal Name
Iop Conference Series: Earth And Environmental Science
Detection of Mineral and Microbial Contaminants in some Types of Imported Meat
...Show More Authors
Abstract<p>The main target of the current study is to investigate the microbial content and mineral contaminants of the imported meat available in the city of Baghdad and to ensure that it is free from harmful bacteria, safe and it compliances with the Iraqi standard specifications. Some trace mineral elements such as (Iron, Copper, Lead, and Cadmium) were also estimated, where 10 brands of these meats were collected. Bacteriological tests were carried out which included (total bacterial count, <italic>Staphylococcus</italic> bacteria, <italic>Salmonella</italic> bacteria). The results showed highest number of total bacterial count 13×10<sup>5</sup> CFU/g in F8 bra</p> ... Show More
View Publication
Scopus (2)
Scopus Crossref
Publication Date
Tue Jun 20 2023
Journal Name
Baghdad Science Journal
Detection of Autism Spectrum Disorder Using A 1-Dimensional Convolutional Neural Network
...Show More Authors

Autism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D

... Show More
View Publication Preview PDF
Scopus (24)
Crossref (18)
Scopus Crossref
Publication Date
Tue Jan 18 2022
Journal Name
Photonic Sensors
Arsenic Detection Using Surface Plasmon Resonance Sensor With Hydrous Ferric Oxide Layer
...Show More Authors
Abstract<p>The lethality of inorganic arsenic (As) and the threat it poses have made the development of efficient As detection systems a vital necessity. This research work demonstrates a sensing layer made of hydrous ferric oxide (Fe<sub>2</sub>H<sub>2</sub>O<sub>4</sub>) to detect As(III) and As(V) ions in a surface plasmon resonance system. The sensor conceptualizes on the strength of Fe<sub>2</sub>H<sub>2</sub>O<sub>4</sub> to absorb As ions and the interaction of plasmon resonance towards the changes occurring on the sensing layer. Detection sensitivity values for As(III) and As(V) were 1.083 °·ppb<sup>−1</sup> and 0.922 °·ppb<jats></jats></p> ... Show More
View Publication
Scopus (9)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Mon Dec 28 2020
Journal Name
The Iraqi Journal Of Veterinary Medicine
Serological and Molecular Phylogenetic Detection of Coxiella burnetii in Lactating Cows, Iraq
...Show More Authors

This study is carried out to investigate the prevalence of Coxiella burnetii (C. burnetii) infections in cattle using an enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR) assay targeting IS1111A transposase gene. A total of 130 lactating cows were randomly selected from different areas in Wasit province, Iraq and subjected to blood and milk sampling during the period extended between November 2018 and May 2019. ELISA and PCR tests revealed that 16.15% and 10% of the animals studied were respectively positive. Significant correlations (P<0.05) were detected between the positive results and clinical data. Two positive PCR products were analyzed phylogenetically, named as C. burnetii IQ-No.5 and C. burnet

... Show More
View Publication Preview PDF
Scopus (12)
Crossref (3)
Scopus Crossref
Publication Date
Wed May 10 2023
Journal Name
Diagnostics
A Deep Feature Fusion of Improved Suspected Keratoconus Detection with Deep Learning
...Show More Authors

Detection of early clinical keratoconus (KCN) is a challenging task, even for expert clinicians. In this study, we propose a deep learning (DL) model to address this challenge. We first used Xception and InceptionResNetV2 DL architectures to extract features from three different corneal maps collected from 1371 eyes examined in an eye clinic in Egypt. We then fused features using Xception and InceptionResNetV2 to detect subclinical forms of KCN more accurately and robustly. We obtained an area under the receiver operating characteristic curves (AUC) of 0.99 and an accuracy range of 97–100% to distinguish normal eyes from eyes with subclinical and established KCN. We further validated the model based on an independent dataset with

... Show More
View Publication
Scopus (20)
Crossref (24)
Scopus Clarivate Crossref
Publication Date
Wed Sep 07 2022
Journal Name
2022 Iraqi International Conference On Communication And Information Technologies (iiccit)
Construct an Efficient DDoS Attack Detection System Based on RF-C4.5-GridSearchCV
...Show More Authors

View Publication
Scopus (4)
Crossref (3)
Scopus Crossref
Publication Date
Sat Aug 31 2024
Journal Name
International Journal Of Intelligent Engineering And Systems
Credit Card Fraud Detection Using an Autoencoder Model with New Loss Function
...Show More Authors

View Publication
Crossref
Publication Date
Wed May 10 2023
Journal Name
Journal Of Engineering
Damage Detection and Assessment of Stiffness and Mass Matrices in Curved Simply Supported Beam Using Genetic Algorithm
...Show More Authors

In this study, a genetic algorithm (GA) is used to detect damage in curved beam model, stiffness as well as mass matrices of the curved beam elements is formulated using Hamilton's principle. Each node of the curved beam element possesses seven degrees of freedom including the warping degree of freedom. The curved beam element had been derived based on the Kang and Yoo’s thin-walled curved beam theory. The identification of damage is formulated as an optimization problem, binary and continuous genetic algorithms
(BGA, CGA) are used to detect and locate the damage using two objective functions (change in natural frequencies, Modal Assurance Criterion MAC). The results show the objective function based on change in natural frequency i

... Show More
View Publication Preview PDF
Crossref