Biometrics represent the most practical method for swiftly and reliably verifying and identifying individuals based on their unique biological traits. This study addresses the increasing demand for dependable biometric identification systems by introducing an efficient approach to automatically recognize ear patterns using Convolutional Neural Networks (CNNs). Despite the widespread adoption of facial recognition technologies, the distinct features and consistency inherent in ear patterns provide a compelling alternative for biometric applications. Employing CNNs in our research automates the identification process, enhancing accuracy and adaptability across various ear shapes and orientations. The ear, being visible and easily captured in an image, possesses the unique characteristic that no two individuals share the same ear patterns. Consequently, our research proposes a system for individual identification based on ear traits, comprising three main stages: (1) pre-processing to extract the ear pattern (region of interest) from input images, (2) feature extraction, and (3) classification. Convolutional Neural Network (CNN) is employed for the feature extraction and classification tasks. The system remains invariant to scaling, brightness, and rotation. Experimental results demonstrate that the proposed system achieved an accuracy of 99.86% for all datasets.
The plant Dianthus Orientalis that belongs to the Caryphyllaceae family is one of the useful plants in Iraq. Its seeds are commonly used for toothache. This project provides the first comprehensive research done in Iraq and the world to study the phytochemicals and the methods of extraction and isolation of active constituents from Dianthus orientalis wildly grown in Iraq. The plant was harvested from Penjwin in AL-Sulaymaniyah city, Iraq in September 2019.The whole plant were washed carefully, dried in shade area for two weeks, and milled in a mechanical grinder to a coarse powder. The plant was defatted by maceration with hexane for 7days and dried after that extracted by cold extraction methods using
... Show MoreAspergillus fumigatus considered to be the most important species to cause respiratory infection cases in both humans and animals especially in cats in the last decades. In this study, we focused on the isolation and identification of Aspergillus fumigates by collecting 40 samples in deferent veterinary clinics and stray cats in Baghdad city, during the period (October 2021 to January 2022), all samples were cultured on Sabouraud dextrose agar and malt extract agar. The isolates identified by the laboratory methods, it’s depend on macroscopic and microscopic appearance. The results showed that (40) swaps taken from the pharynx of infected cats, included: Aspergillus fumigatus 16 (40%), Aspergillus spp. 7 (17.5%), Aspergillus niger
... Show MoreThe study included the investigation of fungi ringed and inventory and Aflatoxins in rice and recorded average temperatures and humidity 22.75 degree Celsius and 13.2% respectively were obtained 1356 isolation innate possible diagnosis 15 species inherent in rice imported back to 8 races represented races b Fusarium , Cladosporium, Aspergillus and Alternaria
The Cassia glauca Lam. is the tree that belongs to the Fabaceae family and is native to India has many uses in indigenous systems of medicine, folk medicine, and traditional Brazilian medicine. Has many pharmacological activities such as anti-diabetic, antibacterial, antifungal, antioxidant, anti-hemolytic, anticancer, cardio-protective, and Hepato-protection. The aim of study is to Isolation, identification, and quantification of some compounds from aerial parts of Cassia glauca since no phytochemical investigation had previously been done in Iraq for this plant. The aerial parts were defatted in n. hexane for 48 hours. The defatted materials were extracted in 85% ethanol using the hot method (soxhlet), then the extract was fra
... Show MoreThe performance of sewage pumps stations affected by many factors through its work time which produce undesired transportation efficiency. This paper is focus on the use of artificial neural network and multiple linear regression (MLR) models for prediction the major sewage pump station in Baghdad city. The data used in this work were obtained from Al-Habibia sewage pump station during specified records- three years in Al-Karkh district, Baghdad. Pumping capability of the stations was recognized by considering the influent input importance of discharge, total suspended solids (TSS) and biological oxygen demand (BOD). In addition, the chemical oxygen demands (COD), pH and chloride (Cl). The proposed model performanc
... Show MoreThe multi-focus image fusion method can fuse more than one focused image to generate a single image with more accurate description. The purpose of image fusion is to generate one image by combining information from many source images of the same scene. In this paper, a multi-focus image fusion method is proposed with a hybrid pixel level obtained in the spatial and transform domains. The proposed method is implemented on multi-focus source images in YCbCr color space. As the first step two-level stationary wavelet transform was applied on the Y channel of two source images. The fused Y channel is implemented by using many fusion rule techniques. The Cb and Cr channels of the source images are fused using principal component analysis (PCA).
... Show MoreAerial manipulation of objects has a number of advantages as it is not limited by the morphology of the terrain. One of the main problems of the aerial payload process is the lack of real-time prediction of the interaction between the gripper of the aerial robot and the payload. This paper introduces a digital twin (DT) approach based on impedance control of the aerial payload transmission process. The impedance control technique is implemented to develop the target impedance based on emerging the mass of the payload and the model of the gripper fingers. Tracking the position of the interactional point between the fingers of gripper and payload, inside the impedance control, is achieved using model predictive control (MPD) approach.
... Show MoreThe refractive index sensors based on tapered optical fiber are attractive for many industries due to sensing capability in a variety of application. In this paper, we proposed a refractive index sensor based on multicore fiber (MCF) sandwiched between two standard single mode fibers (SMF). The sensor consisting of three sections, SMF- MCF-SMF is structurally simple and can be easily produced by joining these parts. The MFC contains seven cores and these cores are surrounded by a single cladding. The sensing region is obtained by tapering the MCF section where the evanescent field is generated. The single mode propagating along the SMF is stimulated at the first joint and is coupled to the cladding modes. These modes interfere with the core
... Show MoreAbstract In this study, an investigation is conducted to realise the possibility of organic materials use in radio frequency (RF) electronics for RF-energy harvesting. Iraqi palm tree remnants mixed with nickel oxide nanoparticles hosted in polyethylene, INP substrates, is proposed for this study. Moreover, a metamaterial (MTM) antenna is printed on the created INP substrate of 0.8 mm thickness using silver nanoparticles conductive ink. The fabricated antenna performances are instigated numerically than validated experimentally in terms of S11 spectra and radiation patterns. It is found that the proposed antenna shows an ultra-wide band matching bandwidth to cover the frequencies from 2.4 to 10 GHz with bore-sight gain variation from 2.2 to
... Show More