Preferred Language
Articles
/
phf3CpIBVTCNdQwCzp0m
Automatic Identification of Ear Patterns Based on Convolutional Neural Network
...Show More Authors

Biometrics represent the most practical method for swiftly and reliably verifying and identifying individuals based on their unique biological traits. This study addresses the increasing demand for dependable biometric identification systems by introducing an efficient approach to automatically recognize ear patterns using Convolutional Neural Networks (CNNs). Despite the widespread adoption of facial recognition technologies, the distinct features and consistency inherent in ear patterns provide a compelling alternative for biometric applications. Employing CNNs in our research automates the identification process, enhancing accuracy and adaptability across various ear shapes and orientations. The ear, being visible and easily captured in an image, possesses the unique characteristic that no two individuals share the same ear patterns. Consequently, our research proposes a system for individual identification based on ear traits, comprising three main stages: (1) pre-processing to extract the ear pattern (region of interest) from input images, (2) feature extraction, and (3) classification. Convolutional Neural Network (CNN) is employed for the feature extraction and classification tasks. The system remains invariant to scaling, brightness, and rotation. Experimental results demonstrate that the proposed system achieved an accuracy of 99.86% for all datasets.

Scopus Crossref
View Publication
Publication Date
Mon Dec 01 2008
Journal Name
Journal Of Economics And Administrative Sciences
Neural Networks as a Discriminant Purposes
...Show More Authors

Discriminant between groups is one of the common procedures because of its ability to analyze many practical phenomena, and there are several methods can be used for this purpose, such as linear and quadratic discriminant functions. recently, neural networks is used as a tool to distinguish between groups.

In this paper the simulation is used to compare neural networks and classical method for classify observations to group that is belong to, in case of some variables that don’t follow the normal distribution. we use the proportion of number of misclassification observations to the all observations as a criterion of comparison.  

 

 

View Publication Preview PDF
Crossref
Publication Date
Thu Jan 01 2009
Journal Name
Computer And Information Science 2009
The Stochastic Network Calculus Methodology
...Show More Authors

Home Computer and Information Science 2009 Chapter The Stochastic Network Calculus Methodology Deah J. Kadhim, Saba Q. Jobbar, Wei Liu & Wenqing Cheng Chapter 568 Accesses 1 Citations Part of the Studies in Computational Intelligence book series (SCI,volume 208) Abstract The stochastic network calculus is an evolving new methodology for backlog and delay analysis of networks that can account for statistical multiplexing gain. This paper advances the stochastic network calculus by deriving a network service curve, which expresses the service given to a flow by the network as a whole in terms of a probabilistic bound. The presented network service curve permits the calculation of statistical end-to-end delay and backlog bounds for broad

... Show More
View Publication
Crossref (1)
Scopus Crossref
Publication Date
Wed Mar 15 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Epidemiolog Study and Identification for Intestinal Parasites have Influence on Passer domesticus in Tikrit City, Iraq
...Show More Authors

 During the period from September 2013 till the end of July 2014 ,a total of 340 birds Passer domesticus were collected from Tikrit city . The study revealed the infection of birds with seven species of  cestoda  helminthes , belonging to the genus Raillietin . These species included  R. tetragona , R. echinobothrida , R. cesticellus and R. ransomi with prevalence infection of 36.1% , 30.1% . 15.0 % and 1.8 % respectively . And the genus Choanotaenia . These species included  C. infundibulum and C. passerine with pervatence infection of 15.0% and 0.6% respectively . And the genus Anonchotuenia . The species included  A.globate with prevantence infection 1.2% .              

... Show More
View Publication Preview PDF
Publication Date
Thu Jun 01 2023
Journal Name
Baghdad Science Journal
Modeling The Power Grid Network Of Iraq
...Show More Authors

Recently, the theory of Complex Networks gives a modern insight into a variety of applications in our life. Complex Networks are used to form complex phenomena into graph-based models that include nodes and edges connecting them. This representation can be analyzed by using network metrics such as node degree, clustering coefficient, path length, closeness, betweenness, density, and diameter, to mention a few. The topology of the complex interconnections of power grids is considered one of the challenges that can be faced in terms of understanding and analyzing them. Therefore, some countries use Complex Networks concepts to model their power grid networks. In this work, the Iraqi Power Grid network (IPG) has been modeled, visua

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Lecture Notes In Networks And Systems
Evaluating the Efficiency of Regional Transport Network
...Show More Authors

View Publication
Scopus (1)
Scopus Crossref
Publication Date
Fri Jul 21 2023
Journal Name
Journal Of Engineering
FACE IDENTIFICATION USING BACK-PROPAGATION ADAPTIVE MULTIWAVENET
...Show More Authors

Face Identification is an important research topic in the field of computer vision and pattern recognition and has become a very active research area in recent decades. Recently multiwavelet-based neural networks (multiwavenets) have been used for function approximation and recognition, but to our best knowledge it has not been used for face Identification. This paper presents a novel approach for the Identification of human faces using Back-Propagation Adaptive Multiwavenet. The proposed multiwavenet has a structure similar to a multilayer perceptron (MLP) neural network with three layers, but the activation function of hidden layer is replaced with multiscaling functions. In experiments performed on the ORL face database it achieved a

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Jun 16 2025
Journal Name
Journal Of Baghdad College Of Dentistry
Genders identification using mandibular canines(Iraqi study)
...Show More Authors

Background: This study aimed to determine the gender of a sample of Iraqi adults using the mesio-distal width of mandibular canines, inter-canine width and standard mandibular canine index, and to determine the percentage of dimorphism as an aid in forensic dentistry. Materials and methods: The sample included 200 sets of study models belong to 200 subjects (100 males and 100 females) with an age ranged between 17-23 years. The mesio-distal crown dimension was measured manually, from the contact points for the mandibular canines (both sides), in addition to the inter-canine width using digital vernier. Descriptive statistics were obtained for the measurements for both genders; paired sample t-test was used to evaluate the side difference of

... Show More
View Publication Preview PDF
Publication Date
Fri Jul 21 2023
Journal Name
Journal Of Engineering
Face Identification Using Back-Propagation Adaptive Multiwavenet
...Show More Authors

Face Identification is an important research topic in the field of computer vision and pattern recognition and has become a very active research area in recent decades. Recently multiwavelet-based neural networks (multiwavenets) have been used for function approximation and recognition, but to our best knowledge it has not been used for face Identification. This paper presents a novel approach for the Identification of human faces using Back-Propagation Adaptive Multiwavenet. The proposed multiwavenet has a structure similar to a multilayer perceptron (MLP) neural network with three layers, but the activation function of hidden layer is replaced with multiscaling functions. In experiments performed on the ORL face database it achieved a

... Show More
View Publication Preview PDF
Publication Date
Tue Sep 08 2020
Journal Name
Baghdad Science Journal
Voice Identification Using MFCC and Vector Quantization
...Show More Authors

The speaker identification is one of the fundamental problems in speech processing and voice modeling. The speaker identification applications include authentication in critical security systems and the accuracy of the selection. Large-scale voice recognition applications are a major challenge. Quick search in the speaker database requires fast, modern techniques and relies on artificial intelligence to achieve the desired results from the system. Many efforts are made to achieve this through the establishment of variable-based systems and the development of new methodologies for speaker identification. Speaker identification is the process of recognizing who is speaking using the characteristics extracted from the speech's waves like pi

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Fri Sep 22 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Design Active Filter Based on Genetic Algorithm
...Show More Authors

The  lossy-FDNR  based  aclive  fil ter has an  important   property among  many  design  realizations. 'This includes  a significant reduction in component count particularly in the number  of OP-AMP which consumes   power.  However  the·  problem  of  this   type  is the  large component spreads  which affect the fdter performance.

In  this  paper   Genetic   Algorithm   is  applied   to  minimize   the component  spread   (capacitance  and  resistance  p,read). The minimization of these spreads allow the fil

... Show More
View Publication Preview PDF