Preferred Language
Articles
/
phf3CpIBVTCNdQwCzp0m
Automatic Identification of Ear Patterns Based on Convolutional Neural Network
...Show More Authors

Biometrics represent the most practical method for swiftly and reliably verifying and identifying individuals based on their unique biological traits. This study addresses the increasing demand for dependable biometric identification systems by introducing an efficient approach to automatically recognize ear patterns using Convolutional Neural Networks (CNNs). Despite the widespread adoption of facial recognition technologies, the distinct features and consistency inherent in ear patterns provide a compelling alternative for biometric applications. Employing CNNs in our research automates the identification process, enhancing accuracy and adaptability across various ear shapes and orientations. The ear, being visible and easily captured in an image, possesses the unique characteristic that no two individuals share the same ear patterns. Consequently, our research proposes a system for individual identification based on ear traits, comprising three main stages: (1) pre-processing to extract the ear pattern (region of interest) from input images, (2) feature extraction, and (3) classification. Convolutional Neural Network (CNN) is employed for the feature extraction and classification tasks. The system remains invariant to scaling, brightness, and rotation. Experimental results demonstrate that the proposed system achieved an accuracy of 99.86% for all datasets.

Scopus Crossref
View Publication
Publication Date
Fri Jan 01 2021
Journal Name
Lecture Notes In Networks And Systems
Evaluating the Efficiency of Regional Transport Network
...Show More Authors

View Publication
Scopus (1)
Scopus Crossref
Publication Date
Thu Jun 01 2023
Journal Name
Baghdad Science Journal
Modeling The Power Grid Network Of Iraq
...Show More Authors

Recently, the theory of Complex Networks gives a modern insight into a variety of applications in our life. Complex Networks are used to form complex phenomena into graph-based models that include nodes and edges connecting them. This representation can be analyzed by using network metrics such as node degree, clustering coefficient, path length, closeness, betweenness, density, and diameter, to mention a few. The topology of the complex interconnections of power grids is considered one of the challenges that can be faced in terms of understanding and analyzing them. Therefore, some countries use Complex Networks concepts to model their power grid networks. In this work, the Iraqi Power Grid network (IPG) has been modeled, visua

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Wed Jan 26 2022
Journal Name
Nanomaterials
Improved Melting of Latent Heat Storage Using Fin Arrays with Non-Uniform Dimensions and Distinct Patterns
...Show More Authors

Employing phase-change materials (PCM) is considered a very efficient and cost-effective option for addressing the mismatch between the energy supply and the demand. The high storage density, little temperature degradation, and ease of material processing register the PCM as a key candidate for the thermal energy storage system. However, the sluggish response rates during their melting and solidification processes limit their applications and consequently require the inclusion of heat transfer enhancers. This research aims to investigate the potential enhancement of circular fins on intensifying the PCM thermal response in a vertical triple-tube casing. Fin arrays of non-uniform dimensions and distinct distribution patterns were des

... Show More
View Publication
Scopus (38)
Crossref (36)
Scopus Clarivate Crossref
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
The Effect Of Optimizers On The Generalizability Additive Neural Attention For Customer Support Twitter Dataset In Chatbot Application
...Show More Authors

When optimizing the performance of neural network-based chatbots, determining the optimizer is one of the most important aspects. Optimizers primarily control the adjustment of model parameters such as weight and bias to minimize a loss function during training. Adaptive optimizers such as ADAM have become a standard choice and are widely used for their invariant parameter updates' magnitudes concerning gradient scale variations, but often pose generalization problems. Alternatively, Stochastic Gradient Descent (SGD) with Momentum and the extension of ADAM, the ADAMW, offers several advantages. This study aims to compare and examine the effects of these optimizers on the chatbot CST dataset. The effectiveness of each optimizer is evaluat

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Tue Jan 16 2018
Journal Name
Design And Manufacture An Automatic Knife For Date Palm Tree Frond Cutting Operates By Frequency Theory Cutting‏ Mra Abdulrazak A. Jasim‏
Design and manufacture an automatic knife for date palm tree frond cutting Operates by frequency theory Cutting‏
...Show More Authors

Publication Date
Tue Apr 14 2020
Journal Name
Modern Sport
The Effect of Using the Bybee Strategy(5ES) according to Brain Control Patterns in Learning a Kinetic Series on Floor exercises in Artistic Gymnastics for men
...Show More Authors

The aim of this study to identify patterns of cerebral control (right and left) for second grade students in the collage of physical education and sports science of the University of Baghdad, as well as identify the definition of theThe Effect of Using the Bybee Strategy(5ES) according to Brain Control Patterns in Learning a Kinetic Series on Floor exercises in Artistic Gymnastics for menمجلة الرياضة المعاصرةالمجلد 19 العدد 1 عام 2020effect using the (Bybee) strategy (5ES) according to brain control patterns inlearning a Kinetic series on floor exercises In artistic gymnastics for men, andidentify the best combination between the four research groups learn, use Finderexperimental method research sample consi

... Show More
Preview PDF
Crossref
Publication Date
Wed Jun 30 2021
Journal Name
Iraqi Journal Of Market Research And Consumer Protection
SYNTHESIS OF NEW LEVOFLOXACIN SELECTIVE MEMBRANE SENSOR BASED ON MOLECULARLY IMPRINTED POLYMERS.: SYNTHESIS OF NEW LEVOFLOXACIN SELECTIVE MEMBRANE SENSOR BASED ON MOLECULARLY IMPRINTED POLYMERS.
...Show More Authors

Two molecular imprinted polymer (MIP) membranes for Levofloxacin (LEV) were prepared based on PVC matrix. The imprinted polymers were prepared by polymerization of styrene (STY) as monomer, N,N methylene di acrylamide as a cross linker ,benzoyl peroxide (BPO) as an initiator and levofloxacin as a template. Di methyl adepate (DMA) and acetophenone (AOPH) were used as plasticizers , the molecular imprinted membranes and the non molecular imprinted membranes were prepared.  The slopes and detection limits of the liquid electrodes ranged from -21.96 – -19.38 mV/decade and 2×10-4M- 4×10-4M, and Its response time was around 1 minute, respectively. The liquid  electrodes were packed with 0.1 M standar

... Show More
View Publication Preview PDF
Publication Date
Wed Sep 01 2021
Journal Name
International Scientific Congress Of Pure, Applied And Technological Sciences (minar Congress)
Evaluation Of Electromagnetic Pollution Of Cellular Mobile Network
...Show More Authors

Wireless communications are characterized by their fastest growth in history, as they used ever-evolving and renewed technologies, which have allowed them to spread widely. Every day, communication technology introduces a new invention with features that differ from its predecessor. Bell Laboratories first suggested mobile wireless communication services to the general population in the late 1940s. Still, it wasn't easy at that time to use on a large scale due to its high costs. This paper aims to describe the state of cellular mobile networks; by comparing the sources of electromagnetic pollution caused by these networks, measure the level of power density in some residential areas, and compare them with international standards adopted in

... Show More
Publication Date
Tue Jun 03 2025
Journal Name
Periodicals Of Engineering And Natural Sciences (pen)
Comparison of some artificial neural networks for graduate students
...Show More Authors

Artificial Neural Networks (ANN) is one of the important statistical methods that are widely used in a range of applications in various fields, which simulates the work of the human brain in terms of receiving a signal, processing data in a human cell and sending to the next cell. It is a system consisting of a number of modules (layers) linked together (input, hidden, output). A comparison was made between three types of neural networks (Feed Forward Neural Network (FFNN), Back propagation network (BPL), Recurrent Neural Network (RNN). he study found that the lowest false prediction rate was for the recurrentt network architecture and using the Data on graduate students at the College of Administration and Economics, Univer

... Show More
View Publication
Crossref
Publication Date
Thu Feb 07 2019
Journal Name
Journal Of The College Of Education For Women
SPEECH RECOGNITION OF ARABIC WORDS USING ARTIFICIAL NEURAL NETWORKS
...Show More Authors

The speech recognition system has been widely used by many researchers using different
methods to fulfill a fast and accurate system. Speech signal recognition is a typical
classification problem, which generally includes two main parts: feature extraction and
classification. In this paper, a new approach to achieve speech recognition task is proposed by
using transformation techniques for feature extraction methods; namely, slantlet transform
(SLT), discrete wavelet transforms (DWT) type Daubechies Db1 and Db4. Furthermore, a
modified artificial neural network (ANN) with dynamic time warping (DTW) algorithm is
developed to train a speech recognition system to be used for classification and recognition
purposes. T

... Show More
View Publication Preview PDF