Biometrics represent the most practical method for swiftly and reliably verifying and identifying individuals based on their unique biological traits. This study addresses the increasing demand for dependable biometric identification systems by introducing an efficient approach to automatically recognize ear patterns using Convolutional Neural Networks (CNNs). Despite the widespread adoption of facial recognition technologies, the distinct features and consistency inherent in ear patterns provide a compelling alternative for biometric applications. Employing CNNs in our research automates the identification process, enhancing accuracy and adaptability across various ear shapes and orientations. The ear, being visible and easily captured in an image, possesses the unique characteristic that no two individuals share the same ear patterns. Consequently, our research proposes a system for individual identification based on ear traits, comprising three main stages: (1) pre-processing to extract the ear pattern (region of interest) from input images, (2) feature extraction, and (3) classification. Convolutional Neural Network (CNN) is employed for the feature extraction and classification tasks. The system remains invariant to scaling, brightness, and rotation. Experimental results demonstrate that the proposed system achieved an accuracy of 99.86% for all datasets.
In this paper the design of hybrid retina matching algorithm that is used in identification systems is considered. Retina based recognition is apparent as the most secure method for identification of an identity utilized to differentiate persons.
The characteristics of Speeded up Robust Feature (SURF) and Binary Robust Invariant Scalable Key-Points (BRISK) algorithm have been used in order to produce a fast matching algorithm than the classical ones, those characteristics are important for real-time applications which usually need quick processing of a growing quantity of data. The algorithm is divided into three stages: retinal image processing and segmentation, extracting the lo
... Show MoreSoftware Defined Network (SDN) is a new technology that separate the control plane from the data plane. SDN provides a choice in automation and programmability faster than traditional network. It supports the Quality of Service (QoS) for video surveillance application. One of most significant issues in video surveillance is how to find the best path for routing the packets between the source (IP cameras) and destination (monitoring center). The video surveillance system requires fast transmission and reliable delivery and high QoS. To improve the QoS and to achieve the optimal path, the SDN architecture is used in this paper. In addition, different routing algorithms are used with different steps. First, we eva
... Show MoreTechnological development in recent years leads to increase the access speed in the networks that allow a huge number of users watching videos online. Video streaming is one of the most popular applications in networking systems. Quality of Experience (QoE) measurement for transmitted video streaming may deal with data transmission problems such as packet loss and delay. This may affect video quality and leads to time consuming. We have developed an objective video quality measurement algorithm that uses different features, which affect video quality. The proposed algorithm has been estimated the subjective video quality with suitable accuracy. In this work, a video QoE estimation metric for video strea
... Show MoreInfrastructure, especially wastewater projects, plays an important role in the life of residential communities. Due to the increasing population growth, there is also a significant increase in residential and commercial facilities. This research aims to develop two models for predicting the cost and time of wastewater projects according to independent variables affecting them. These variables have been determined through a questionnaire distributed to 20 projects under construction in Al-Kut City/ Wasit Governorate/Iraq. The researcher used artificial neural network technology to develop the models. The results showed that the coefficient of correlation R between actual and predicted values were 99.4% and 99 %, MAPE was
... Show MoreSoftware Defined Networking (SDN) with centralized control provides a global view and achieves efficient network resources management. However, using centralized controllers has several limitations related to scalability and performance, especially with the exponential growth of 5G communication. This paper proposes a novel traffic scheduling algorithm to avoid congestion in the control plane. The Packet-In messages received from different 5G devices are classified into two classes: critical and non-critical 5G communication by adopting Dual-Spike Neural Networks (DSNN) classifier and implementing it on a Virtualized Network Function (VNF). Dual spikes identify each class to increase the reliability of the classification
... Show MoreANN modeling is used here to predict missing monthly precipitation data in one station of the eight weather stations network in Sulaimani Governorate. Eight models were developed, one for each station as for prediction. The accuracy of prediction obtain is excellent with correlation coefficients between the predicted and the measured values of monthly precipitation ranged from (90% to 97.2%). The eight ANN models are found after many trials for each station and those with the highest correlation coefficient were selected. All the ANN models are found to have a hyperbolic tangent and identity activation functions for the hidden and output layers respectively, with learning rate of (0.4) and momentum term of (0.9), but with different data
... Show MoreOver the past few years, ear biometrics has attracted a lot of attention. It is a trusted biometric for the identification and recognition of humans due to its consistent shape and rich texture variation. The ear presents an attractive solution since it is visible, ear images are easily captured, and the ear structure remains relatively stable over time. In this paper, a comprehensive review of prior research was conducted to establish the efficacy of utilizing ear features for individual identification through the employment of both manually-crafted features and deep-learning approaches. The objective of this model is to present the accuracy rate of person identification systems based on either manually-crafted features such as D
... Show More