Biometrics represent the most practical method for swiftly and reliably verifying and identifying individuals based on their unique biological traits. This study addresses the increasing demand for dependable biometric identification systems by introducing an efficient approach to automatically recognize ear patterns using Convolutional Neural Networks (CNNs). Despite the widespread adoption of facial recognition technologies, the distinct features and consistency inherent in ear patterns provide a compelling alternative for biometric applications. Employing CNNs in our research automates the identification process, enhancing accuracy and adaptability across various ear shapes and orientations. The ear, being visible and easily captured in an image, possesses the unique characteristic that no two individuals share the same ear patterns. Consequently, our research proposes a system for individual identification based on ear traits, comprising three main stages: (1) pre-processing to extract the ear pattern (region of interest) from input images, (2) feature extraction, and (3) classification. Convolutional Neural Network (CNN) is employed for the feature extraction and classification tasks. The system remains invariant to scaling, brightness, and rotation. Experimental results demonstrate that the proposed system achieved an accuracy of 99.86% for all datasets.
The problem of research was to identify after the use of cost technology based on specifications in the validity of determining and measuring the costs of the implementation of contracting, by applying to al-Mansour General Construction Contracting Company as an appropriate alternative to the traditional costing system currently adopted, which is characterized by many shortcomings and weaknesses Which has been reflected in the validity and integrity of the calculations. To solve this problem, the research was based on the premise that: (The application of cost technology based on specifications will result in calculating the cost of the product according to the specification required by the customer, to meet his wishes properly and witho
... Show MoreFocusing of Gaussian laser beam through nonlinear media can induce spatial self- phase modulation which forms a far field intensity pattern of concentric rings. The nonlinear refractive index change of material depends on the number of pattern rings. In this paper, a formation of tunable nonlinear refractive index change of hybrid functionalized carbon nanotubes/silver nanoparticles acetone suspensions (F-MWCNTs/Ag-NPs) at weight mixing ratio of 1:3 and volume fraction of 6x10-6 , 9x10-6 , and 18x10-6 using laser beam at wavelength of 473nm was investigated experimentally. The results showed that tunable nonlinear refractive indices were obtained and increasing of incident laser power density led to increase the nonlinear refractive inde
... Show MoreIdentifying the total number of fruits on trees has long been of interest in agricultural crop estimation work. Yield prediction of fruits in practical environment is one of the hard and significant tasks to obtain better results in crop management system to achieve more productivity with regard to moderate cost. Utilized color vision in machine vision system to identify citrus fruits, and estimated yield information of the citrus grove in-real time. Fruit recognition algorithms based on color features to estimate the number of fruit. In the current research work, some low complexity and efficient image analysis approach was proposed to count yield fruits image in the natural scene. Semi automatic segmentation and yield calculation of fruit
... Show MoreIn this paper, we implement and examine a Simulink model with electroencephalography (EEG) to control many actuators based on brain waves. This will be in great demand since it will be useful for certain individuals who are unable to access some control units that need direct contact with humans. In the beginning, ten volunteers of a wide range of (20-66) participated in this study, and the statistical measurements were first calculated for all eight channels. Then the number of channels was reduced by half according to the activation of brain regions within the utilized protocol and the processing time also decreased. Consequently, four of the participants (three males and one female) were chosen to examine the Simulink model duri
... Show MoreGender classification is a critical task in computer vision. This task holds substantial importance in various domains, including surveillance, marketing, and human-computer interaction. In this work, the face gender classification model proposed consists of three main phases: the first phase involves applying the Viola-Jones algorithm to detect facial images, which includes four steps: 1) Haar-like features, 2) Integral Image, 3) Adaboost Learning, and 4) Cascade Classifier. In the second phase, four pre-processing operations are employed, namely cropping, resizing, converting the image from(RGB) Color Space to (LAB) color space, and enhancing the images using (HE, CLAHE). The final phase involves utilizing Transfer lea
... Show More