Biometrics represent the most practical method for swiftly and reliably verifying and identifying individuals based on their unique biological traits. This study addresses the increasing demand for dependable biometric identification systems by introducing an efficient approach to automatically recognize ear patterns using Convolutional Neural Networks (CNNs). Despite the widespread adoption of facial recognition technologies, the distinct features and consistency inherent in ear patterns provide a compelling alternative for biometric applications. Employing CNNs in our research automates the identification process, enhancing accuracy and adaptability across various ear shapes and orientations. The ear, being visible and easily captured in an image, possesses the unique characteristic that no two individuals share the same ear patterns. Consequently, our research proposes a system for individual identification based on ear traits, comprising three main stages: (1) pre-processing to extract the ear pattern (region of interest) from input images, (2) feature extraction, and (3) classification. Convolutional Neural Network (CNN) is employed for the feature extraction and classification tasks. The system remains invariant to scaling, brightness, and rotation. Experimental results demonstrate that the proposed system achieved an accuracy of 99.86% for all datasets.
In this article, the high accuracy and effectiveness of forecasting global gold prices are verified using a hybrid machine learning algorithm incorporating an Adaptive Neuro-Fuzzy Inference System (ANFIS) model with Particle Swarm Optimization (PSO) and Gray Wolf Optimizer (GWO). The hybrid approach had successes that enabled it to be a good strategy for practical use. The ARIMA-ANFIS hybrid methodology was used to forecast global gold prices. The ARIMA model is implemented on real data, and then its nonlinear residuals are predicted by ANFIS, ANFIS-PSO, and ANFIS-GWO. The results indicate that hybrid models improve the accuracy of single ARIMA and ANFIS models in forecasting. Finally, a comparison was made between the hybrid foreca
... Show MoreThe objective of the study was to identify the effectiveness of a training program based on the employment of the educational portal in the development of the skills of the administrative body in the basic education schools in Dhofar Governorate. To achieve the goal, a training program was designed that includes the skills of the educational portal to be met by the administrative body and measuring its effectiveness. A questionnaire to identify training needs, and a notecard to evaluate performance. The study sample consisted of (70) individuals of the administrative staff. The researchers used the descriptive-analytical method to identify the training needs, design and build the training program and the experimental method for applying
... Show MoreThe research aims to demonstrate the impact of TDABC as a strategic technology compatible with the rapid developments and changes in the contemporary business environment) on pricing decisions. As TDABC provides a new philosophy in the process of allocating indirect costs through time directives of resources and activities to the goal of cost, identifying unused energy and associated costs, which provides the management of economic units with financial and non-financial information that helps them in the complex and dangerous decision-making process. Of pricing decisions. To achieve better pricing decisions in light of the endeavor to maintain customers in a highly competitive environment and a variety of alternatives, the resear
... Show MoreMany studies have been published to address the growing issues in wireless communication systems. Space-Time Block Coding (STBC) is an effective and practical MIMO-OFDM application that can address such issues. It is a powerful tool for increasing wireless performance by coding data symbols and transmitting diversity using several antennas. The most significant challenge is to recover the transmitted signal through a time-varying multipath fading channel and obtain a precise channel estimation to recover the transmitted information symbols. This work considers different pilot patterns for channel estimation and equalization in MIMO-OFDM systems. The pilot patterns fall under two general types: comb and block types, with
... Show MoreCapacitive–resistive humidity sensors based on polythiophene (P3HT) organic semiconductor as an active material hybrid with three types of metallic nanoparticles (NP) (Ag, Al, and Cu) were synthesized by pulsed laser ablation (PLA). The hybrid P3HT/metallic nanoparticles were deposited on indium-tin-oxide (ITO) substrate at room temperature. The surface morphology of theses samples was studied by using field emission scanning electron micrographs (FE-SEM), which indicated the formation of nanoparticles with grain size of about 50nm. The electrical characteristics of the sensors were examined as a function of the relative humidity levels. The sensors showed an increase in the capacitance with variation in the humidity level. Whil
... Show MoreOrthogonal Frequency Division Multiplexing (OFDM) is an efficient multi-carrier technique.The core operation in the OFDM systems is the FFT/IFFT unit that requires a large amount of hardware resources and processing delay. The developments in implementation techniques likes Field Programmable Gate Array (FPGA) technologies have made OFDM a feasible option. The goal of this paper is to design and implement an OFDM transmitter based on Altera FPGA using Quartus software. The proposed transmitter is carried out to simplify the Fourier transform calculation by using decoder instead of multipliers. After programming ALTERA DE2 FPGA kit with implemented project, several practical tests have been done starting from monitoring all the results of
... Show More