This work is concerned with a two stages four beds adsorption chiller utilizing activated carbon-methanol adsorption pair that operates on six separated processes. The four beds that act as thermal compressors are powered by a low grade thermal energy in the form of hot water at a temperature range of 65 to 83 °C. As well as, the water pumps and control cycle consume insignificant electrical power. This adsorption chiller consists of three water cycles. The first water cycle is the driven hot water cycle. The second cycle is the cold water cycle to cool the carbon, which adsorbs the methanol. Finally, the chilled water cycle that is used to overcome the building load. The theoretical results showed that average cycle cooling power
... Show MoreEleven hymenopterous species: two braconids, seven eulophids and two pteromalids
parasitized the larvae of Phytomyza horticola Goureau. The activity of the parasites began at
the end of April and evidently increased during May. The female of the parasites fed and
parasitized mostly on the second and third larval instars of P. horticola . Diglyphus iseae
Walker and Cirrospilus vittatus Walker were dominant larval parasites. Chrysocharis
pentheus Walker and Pediobius acantha Walker were main pupal parasites.
This paper adapted the neural network for the estimating of the direction of arrival (DOA). It uses an unsupervised adaptive neural network with GHA algorithm to extract the principal components that in turn, are used by Capon method to estimate the DOA, where by the PCA neural network we take signal subspace only and use it in Capon (i.e. we will ignore the noise subspace, and take the signal subspace only).
In this paper we investigate the automatic recognition of emotion in text. We propose a new method for emotion recognition based on the PPM (PPM is short for Prediction by Partial Matching) character-based text compression scheme in order to recognize Ekman’s six basic emotions (Anger, Disgust, Fear, Happiness, Sadness, Surprise). Experimental results with three datasets show that the new method is very effective when compared with traditional word-based text classification methods. We have also found that our method works best if the sizes of text in all classes used for training are similar, and that performance significantly improves with increased data.
In Automatic Speech Recognition (ASR) the non-linear data projection provided by a one hidden layer Multilayer Perceptron (MLP), trained to recognize phonemes, and has previous experiments to provide feature enhancement substantially increased ASR performance, especially in noise. Previous attempts to apply an analogous approach to speaker identification have not succeeded in improving performance, except by combining MLP processed features with other features. We present test results for the TIMIT database which show that the advantage of MLP preprocessing for open set speaker identification increases with the number of speakers used to train the MLP and that improved identification is obtained as this number increases beyond sixty.
... Show MoreDigital image is widely used in computer applications. This paper introduces a proposed method of image zooming based upon inverse slantlet transform and image scaling. Slantlet transform (SLT) is based on the principle of designing different filters for different scales.
First we apply SLT on color image, the idea of transform color image into slant, where large coefficients are mainly the signal and smaller one represent the noise. By suitably modifying these coefficients , using scaling up image by box and Bartlett filters so that the image scales up to 2X2 and then inverse slantlet transform from modifying coefficients using to the reconstructed image .
&nbs
... Show MoreThe purpose of this research is to enhance the role of organizational communication in organizations using IT technologies. The results showed that there is a strong relationship with information technology technologies in enhancing the role of organizational communication, which in turn helps to improve the performance of organizations in general
In this paper, integrated quantum neural network (QNN), which is a class of feedforward
neural networks (FFNN’s), is performed through emerging quantum computing (QC) with artificial neural network(ANN) classifier. It is used in data classification technique, and here iris flower data is used as a classification signals. For this purpose independent component analysis (ICA) is used as a feature extraction technique after normalization of these signals, the architecture of (QNN’s) has inherently built in fuzzy, hidden units of these networks (QNN’s) to develop quantized representations of sample information provided by the training data set in various graded levels of certainty. Experimental results presented here show that
... Show More