This paper presents a hybrid approach for solving null values problem; it hybridizes rough set theory with intelligent swarm algorithm. The proposed approach is a supervised learning model. A large set of complete data called learning data is used to find the decision rule sets that then have been used in solving the incomplete data problem. The intelligent swarm algorithm is used for feature selection which represents bees algorithm as heuristic search algorithm combined with rough set theory as evaluation function. Also another feature selection algorithm called ID3 is presented, it works as statistical algorithm instead of intelligent algorithm. A comparison between those two approaches is made in their performance for null values estimation through working with rough set theory. The results obtained from most code sets show that Bees algorithm better than ID3 in decreasing the number of extracted rules without affecting the accuracy and increasing the accuracy ratio of null values estimation, especially when the number of null values is increasing
Objective: To identify the effect of the cube model on visual-spatial intelligence and learning the skill of spikinging in volleyball for female students, The researchers used the experimental method by designing two equivalent groups with pre- and post-measurements. Research methodology: The main research sample of (30) female students was selected from the research community represented by second-stage students in the College of Physical Education and Sports Sciences - University of Baghdad for the academic year (2024-2025). The sample was divided equally into two control and experimental groups. The researchers conducted the sample homogenization process and the equivalence process between the two groups in the variables of visua
... Show MorePhysical measurements are one of the basic factors that affect the performance of the goalkeeper, especially when confronting fixed kicks that require special skills such as the reaction and accuracy in concentration, and with technological development artificial intelligence has become an effective tool for analyzing mathematical data that is difficult to discover in traditional methods The study aims to employ techniques Artificial intelligence to study the relationship between physical measurements and the accuracy of confronting the fixed kicks of goalkeepers in football. This study will contribute to providing a deeper understanding of physical factors that affect the performance of goalkeepers, in addition to designing dedicat
... Show MoreThe paper presents a highly accurate power flow solution, reducing the possibility of ending at local minima, by using Real-Coded Genetic Algorithm (RCGA) with system reduction and restoration. The proposed method (RCGA) is modified to reduce the total computing time by reducing the system in size to that of the generator buses, which, for any realistic system, will be smaller in number, and the load buses are eliminated. Then solving the power flow problem for the generator buses only by real-coded GA to calculate the voltage phase angles, whereas the voltage magnitudes are specified resulted in reduced computation time for the solution. Then the system is restored by calculating the voltages of the load buses in terms
... Show MoreNatural Bauxite (BXT) mineral clay was modified with a cationic surfactant (hexadecy ltrimethy lammonium bromide (BXT-HDTMA)) and characterized with different techniques: FTIR spectroscopy, X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). The modified and natural bauxite (BXT) were used as adsorbents for the adsorption of 4- Chlorophenol (4-CP) from aqueous solutions. The adsorption study was carried out at different conditions and parameters: contact time, pH value, adsorbent dosage and ionic strength. The adsorption kinetic (described by a pseudo-first order and a pseudo-second order), equilibrium experimental data (analyzed by Langmuir, Freundlich and Temkin isotherm models) and thermodynamic parameters (change in s
... Show MoreA skip list data structure is really just a simulation of a binary search tree. Skip lists algorithm are simpler, faster and use less space. this data structure conceptually uses parallel sorted linked lists. Searching in a skip list is more difficult than searching in a regular sorted linked list. Because a skip list is a two dimensional data structure, it is implemented using a two dimensional network of nodes with four pointers. the implementation of the search, insert and delete operation taking a time of upto . The skip list could be modified to implement the order statistic operations of RANKand SEARCH BY RANK while maintaining the same expected time. Keywords:skip list , parallel linked list , randomized algorithm , rank.