This paper presents a hybrid approach for solving null values problem; it hybridizes rough set theory with intelligent swarm algorithm. The proposed approach is a supervised learning model. A large set of complete data called learning data is used to find the decision rule sets that then have been used in solving the incomplete data problem. The intelligent swarm algorithm is used for feature selection which represents bees algorithm as heuristic search algorithm combined with rough set theory as evaluation function. Also another feature selection algorithm called ID3 is presented, it works as statistical algorithm instead of intelligent algorithm. A comparison between those two approaches is made in their performance for null values estimation through working with rough set theory. The results obtained from most code sets show that Bees algorithm better than ID3 in decreasing the number of extracted rules without affecting the accuracy and increasing the accuracy ratio of null values estimation, especially when the number of null values is increasing
Crime is considered as an unlawful activity of all kinds and it is punished by law. Crimes have an impact on a society's quality of life and economic development. With a large rise in crime globally, there is a necessity to analyze crime data to bring down the rate of crime. This encourages the police and people to occupy the required measures and more effectively restricting the crimes. The purpose of this research is to develop predictive models that can aid in crime pattern analysis and thus support the Boston department's crime prevention efforts. The geographical location factor has been adopted in our model, and this is due to its being an influential factor in several situations, whether it is traveling to a specific area or livin
... Show MoreAbstract
The study seeks to use one of the techniques (Data mining) a (Logic regression) on the inherited risk through the use of style financial ratios technical analysis and then apply for financial fraud indicators,Since higher scandals exposed companies and the failure of the audit process has shocked the community and affected the integrity of the auditor and the reason is financial fraud practiced by the companies and not to the discovery of the fraud by the auditor, and this fraud involves intentional act aimed to achieve personal and harm the interests of to others, and doing (administration, staff) we can say that all frauds carried out through the presence of the motives and factors that help th
... Show MoreTourism plays an important role in Malaysia’s economic development as it can boost business opportunity in its surrounding economic. By apply data mining on tourism data for predicting the area of business opportunity is a good choice. Data mining is the process that takes data as input and produces outputs knowledge. Due to the population of travelling in Asia country has increased in these few years. Many entrepreneurs start their owns business but there are some problems such as wrongly invest in the business fields and bad services quality which affected their business income. The objective of this paper is to use data mining technology to meet the business needs and customer needs of tourism enterprises and find the most effective
... Show MoreCloud computing represents the most important shift in computing and information technology (IT). However, security and privacy remain the main obstacles to its widespread adoption. In this research we will review the security and privacy challenges that affect critical data in cloud computing and identify solutions that are used to address these challenges. Some questions that need answers are: (a) User access management, (b) Protect privacy of sensitive data, (c) Identity anonymity to protect the Identity of user and data file. To answer these questions, a systematic literature review was conducted and structured interview with several security experts working on cloud computing security to investigate the main objectives of propo
... Show MoreOne wide-ranging category of open source data is that referring to geospatial information web sites. Despite the advantages of such open source data, including ease of access and cost free data, there is a potential issue of its quality. This article tests the horizontal positional accuracy and possible integration of four web-derived geospatial datasets: OpenStreetMap (OSM), Google Map, Google Earth and Wikimapia. The evaluation was achieved by combining the tested information with reference field survey data for fifty road intersections in Baghdad, Iraq. The results indicate that the free geospatial data can be used to enhance authoritative maps especially small scale maps.
This research study Blur groups (Fuzzy Sets) which is the perception of the most modern in the application in various practical and theoretical areas and in various fields of life, was addressed to the fuzzy random variable whose value is not real, but the numbers Millbh because it expresses the mysterious phenomena or uncertain with measurements are not assertive. Fuzzy data were presented for binocular test and analysis of variance method of random Fuzzy variables , where this method depends on a number of assumptions, which is a problem that prevents the use of this method in the case of non-realized.