This paper presents a hybrid approach for solving null values problem; it hybridizes rough set theory with intelligent swarm algorithm. The proposed approach is a supervised learning model. A large set of complete data called learning data is used to find the decision rule sets that then have been used in solving the incomplete data problem. The intelligent swarm algorithm is used for feature selection which represents bees algorithm as heuristic search algorithm combined with rough set theory as evaluation function. Also another feature selection algorithm called ID3 is presented, it works as statistical algorithm instead of intelligent algorithm. A comparison between those two approaches is made in their performance for null values estimation through working with rough set theory. The results obtained from most code sets show that Bees algorithm better than ID3 in decreasing the number of extracted rules without affecting the accuracy and increasing the accuracy ratio of null values estimation, especially when the number of null values is increasing
This article aims to estimate the partially linear model by using two methods, which are the Wavelet and Kernel Smoothers. Simulation experiments are used to study the small sample behavior depending on different functions, sample sizes, and variances. Results explained that the wavelet smoother is the best depending on the mean average squares error criterion for all cases that used.
Wind energy is considered one of the most important sources of renewable energy in the world, because it contributes to reducing the negative effects on the environment. The most important types of wind turbines are horizontal and vertical axis wind turbines. This work presents the full details of design for vertical axis wind turbine (VAWT) and how to find the optimal values of necessary factors. Additionally, the results shed light on the efficiency and performance of the VAWT under different working conditions. It was taken into consideration the variety of surrounding environmental conditions (such as density and viscosity of fluid, number of elements of the blade, etc.) to simulate the working of vertical wind turbines under di
... Show More
The effective surface area of drug particle is increased by a reduction in the particle size. Since dissolution takes place at the surface of the solute, the larger the surface area, the further rapid is the rate of drug dissolution. Ketoprofen is class II type drug according to (Biopharmaceutics Classification System BCS) with low solubility and high permeability. The aim of this investigation was to increase the solubility and hence the dissolution rate by the preparation of ketoprofen nanosuspension using solvent evaporation method. Materials like PVP K30, poloxamer 188, HPMC E5, HPMC E15, HPMC E50, Tween 80 were used as stabilizers in perpetration of differ
... Show MoreThe microbend sensor is designed to experience a light loss when force is applied to the sensor. The periodic microbends cause propagating light to couple into higher order modes, the existing higher order modes become unguided modes. Three models of deform cells are fabricated at (3, 5, 8) mm pitchand tested by using MMF and laser source at 850 nm. The maximum output power of (8, 5, 3)mm model is (3, 2.7, 2.55)nW respectively at applied force 5N and the minimum value is (1.9, 1.65, 1.5)nW respectively at 60N.The strain is calculated at different microbend cells ,and the best sensitivity of this sensor for cell 8mm is equal to 0.6nW/N.
<span>One of the main difficulties facing the certified documents documentary archiving system is checking the stamps system, but, that stamps may be contains complex background and surrounded by unwanted data. Therefore, the main objective of this paper is to isolate background and to remove noise that may be surrounded stamp. Our proposed method comprises of four phases, firstly, we apply k-means algorithm for clustering stamp image into a number of clusters and merged them using ISODATA algorithm. Secondly, we compute mean and standard deviation for each remaining cluster to isolate background cluster from stamp cluster. Thirdly, a region growing algorithm is applied to segment the image and then choosing the connected regi
... Show MoreCNC machine is used to machine complex or simple shapes at higher speed with maximum accuracy and minimum error. In this paper a previously designed CNC control system is used to machine ellipses and polylines. The sample needs to be machined is drawn by using one of the drawing software like AUTOCAD® or 3D MAX and is saved in a well-known file format (DXF) then that file is fed to the CNC machine controller by the CNC operator then that part will be machined by the CNC machine. The CNC controller using developed algorithms that reads the DXF file feeds to the machine, extracts the shapes from the file and generates commands to move the CNC machine axes so that these shapes can be machined.
A steganography hides information within other information, such as file, message, picture, or video. A cryptography is the science of converting the information from a readable form to an unreadable form for unauthorized person. The main problem in the stenographic system is embedding in cover-data without providing information that would facilitate its removal. In this research, a method for embedding data into images is suggested which employs least significant bit Steganography (LSB) and ciphering (RSA algorithm) to protect the data. System security will be enhanced by this collaboration between steganography and cryptography.
This paper includes an experimental study of hydrogen mass flow rate and inlet hydrogen pressure effect on the fuel cell performance. Depending on the experimental results, a model of fuel cell based on artificial neural networks is proposed. A back propagation learning rule with the log-sigmoid activation function is adopted to construct neural networks model. Experimental data resulting from 36 fuel cell tests are used as a learning data. The hydrogen mass flow rate, applied load and inlet hydrogen pressure are inputs to fuel cell model, while the current and voltage are outputs. Proposed model could successfully predict the fuel cell performance in good agreement with actual data. This work is extended to developed fuel cell feedback
... Show MoreA number of compression schemes were put forward to achieve high compression factors with high image quality at a low computational time. In this paper, a combined transform coding scheme is proposed which is based on discrete wavelet (DWT) and discrete cosine (DCT) transforms with an added new enhancement method, which is the sliding run length encoding (SRLE) technique, to further improve compression. The advantages of the wavelet and the discrete cosine transforms were utilized to encode the image. This first step involves transforming the color components of the image from RGB to YUV planes to acquire the advantage of the existing spectral correlation and consequently gaining more compression. DWT is then applied to the Y, U and V col
... Show More<p class="0abstract">Image denoising is a technique for removing unwanted signals called the noise, which coupling with the original signal when transmitting them; to remove the noise from the original signal, many denoising methods are used. In this paper, the Multiwavelet Transform (MWT) is used to denoise the corrupted image by Choosing the HH coefficient for processing based on two different filters Tri-State Median filter and Switching Median filter. With each filter, various rules are used, such as Normal Shrink, Sure Shrink, Visu Shrink, and Bivariate Shrink. The proposed algorithm is applied Salt& pepper noise with different levels for grayscale test images. The quality of the denoised image is evaluated by usi
... Show More