Photocatalytic materials are being investigated as effective bactericides due to their superior ability to inactivate a broad range of dangerous microbes. In this study, the following two types of bacteria were employed for bactericidal purposes: Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus). The shape, crystal structure, element percentage, and optical properties of Ag9(SiO4)2NO3 were examined after it was successfully synthesized by a standard mixing and grinding processing route. Bactericidal efficiency was recorded at 100% by the following two types of light sources: solar and simulated light, with initial photocatalyst concentration of 2 µg/mL, and 97% and 95% of bactericidal activity in ultra-low photocatalyst concentration of 0.2 µg/mL by solar and simulated light, respectively, after 10 min. The survival rate was studied for 6 min, resulting in 99.8% inhibition at the photocatalyst dose of 2 µg/mL. The mechanism of bactericidal efficiency was found to be that the photocatalyst has high oxidation potential in the valence band. Consequently, holes play a significant part in bactericidal efficiency.
The present study discusses the significant role of the historical memory in all the Spanish society aspects of life. When a novelist takes the role and puts on the mask of one of the novel’s protagonists or hidden characters, his memory of the events becomes the keywords of accessing the close-knit fabric of society and sheds lights on deteriorating social conceptions in a backwards social reality that rejects all new progressive ideas and modernity. Through concentrating on the society flawing aspects and employing everything of his stored memory, the author uses sarcasm to criticize and change such old deteriorating reality conceptions.
&nbs
... Show More